57 research outputs found

    Controlling Several Atoms in a Cavity

    Full text link
    We treat control of several two-level atoms interacting with one mode of the electromagnetic field in a cavity. This provides a useful model to study pertinent aspects of quantum control in infinite dimensions via the emergence of infinite-dimensional system algebras. Hence we address problems arising with infinite-dimensional Lie algebras and those of unbounded operators. For the models considered, these problems can be solved by splitting the set of control Hamiltonians into two subsets: The first obeys an abelian symmetry and can be treated in terms of infinite-dimensional Lie algebras and strongly closed subgroups of the unitary group of the system Hilbert space. The second breaks this symmetry, and its discussion introduces new arguments. Yet, full controllability can be achieved in a strong sense: e.g., in a time dependent Jaynes-Cummings model we show that, by tuning coupling constants appropriately, every unitary of the coupled system (atoms and cavity) can be approximated with arbitrarily small error

    Maximally entangled fermions

    Full text link
    Fermions play an essential role in many areas of quantum physics and it is desirable to understand the nature of entanglement within systems that consists of fermions. Whereas the issue of separability for bipartite fermions has extensively been studied in the present literature, this paper is concerned with maximally entangled fermions. A complete characterization of maximally entangled quasifree (gaussian) fermion states is given in terms of the covariance matrix. This result can be seen as a step towards distillation protocols for maximally entangled fermions.Comment: 13 pages, 1 figure, RevTex, minor errors are corrected, section "Conclusions" is adde
    • …
    corecore