13 research outputs found

    Glial Cell Dysfunction in C9orf72-Related Amyotrophic Lateral Sclerosis and Frontotemporal Dementia

    Get PDF
    Since the discovery of the chromosome 9 open reading frame 72 (C9orf72) repeat expansion mutation in 2011 as the most common genetic abnormality in amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig\u27s disease) and frontotemporal dementia (FTD), progress in understanding the signaling pathways related to this mutation can only be described as intriguing. Two major theories have been suggested-(i) loss of function or haploinsufficiency and (ii) toxic gain of function from either C9orf72 repeat RNA or dipeptide repeat proteins (DPRs) generated from repeat-associated non-ATG (RAN) translation. Each theory has provided various signaling pathways that potentially participate in the disease progression. Dysregulation of the immune system, particularly glial cell dysfunction (mainly microglia and astrocytes), is demonstrated to play a pivotal role in both loss and gain of function theories of C9orf72 pathogenesis. In this review, we discuss the pathogenic roles of glial cells in C9orf72 ALS/FTD as evidenced by pre-clinical and clinical studies showing the presence of gliosis in C9orf72 ALS/FTD, pathologic hallmarks in glial cells, including TAR DNA-binding protein 43 (TDP-43) and p62 aggregates, and toxicity of C9orf72 glial cells. A better understanding of these pathways can provide new insights into the development of therapies targeting glial cell abnormalities in C9orf72 ALS/FTD

    Glial Cell Dysfunction in <i>C9orf72</i>-Related Amyotrophic Lateral Sclerosis and Frontotemporal Dementia

    No full text
    Since the discovery of the chromosome 9 open reading frame 72 (C9orf72) repeat expansion mutation in 2011 as the most common genetic abnormality in amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig’s disease) and frontotemporal dementia (FTD), progress in understanding the signaling pathways related to this mutation can only be described as intriguing. Two major theories have been suggested—(i) loss of function or haploinsufficiency and (ii) toxic gain of function from either C9orf72 repeat RNA or dipeptide repeat proteins (DPRs) generated from repeat-associated non-ATG (RAN) translation. Each theory has provided various signaling pathways that potentially participate in the disease progression. Dysregulation of the immune system, particularly glial cell dysfunction (mainly microglia and astrocytes), is demonstrated to play a pivotal role in both loss and gain of function theories of C9orf72 pathogenesis. In this review, we discuss the pathogenic roles of glial cells in C9orf72 ALS/FTD as evidenced by pre-clinical and clinical studies showing the presence of gliosis in C9orf72 ALS/FTD, pathologic hallmarks in glial cells, including TAR DNA-binding protein 43 (TDP-43) and p62 aggregates, and toxicity of C9orf72 glial cells. A better understanding of these pathways can provide new insights into the development of therapies targeting glial cell abnormalities in C9orf72 ALS/FTD

    Glial Cell Dysfunction in C9orf72-Related Amyotrophic Lateral Sclerosis and Frontotemporal Dementia

    No full text
    Since the discovery of the chromosome 9 open reading frame 72 (C9orf72) repeat expansion mutation in 2011 as the most common genetic abnormality in amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig&rsquo;s disease) and frontotemporal dementia (FTD), progress in understanding the signaling pathways related to this mutation can only be described as intriguing. Two major theories have been suggested&mdash;(i) loss of function or haploinsufficiency and (ii) toxic gain of function from either C9orf72 repeat RNA or dipeptide repeat proteins (DPRs) generated from repeat-associated non-ATG (RAN) translation. Each theory has provided various signaling pathways that potentially participate in the disease progression. Dysregulation of the immune system, particularly glial cell dysfunction (mainly microglia and astrocytes), is demonstrated to play a pivotal role in both loss and gain of function theories of C9orf72 pathogenesis. In this review, we discuss the pathogenic roles of glial cells in C9orf72 ALS/FTD as evidenced by pre-clinical and clinical studies showing the presence of gliosis in C9orf72 ALS/FTD, pathologic hallmarks in glial cells, including TAR DNA-binding protein 43 (TDP-43) and p62 aggregates, and toxicity of C9orf72 glial cells. A better understanding of these pathways can provide new insights into the development of therapies targeting glial cell abnormalities in C9orf72 ALS/FTD

    When Hit the Closed Doors, There is a Genetic Door Which Might Be Open!

    No full text
    Mutations in the ALPK1 gene are associated with a recently recognized autosomal dominant condition of neuro-ophthalmic interest, the ‘'ROSAH syndrome'' with clinical features of Retinal dystrophy, Optic nerve edema, Splenomegaly, Anhidrosis, and migraine Headache

    Gene Therapy in Amyotrophic Lateral Sclerosis

    No full text
    Since the discovery of Cu/Zn superoxide dismutase (SOD1) gene mutation, in 1993, as the first genetic abnormality in amyotrophic lateral sclerosis (ALS), over 50 genes have been identified as either cause or modifier in ALS and ALS/frontotemporal dementia (FTD) spectrum disease. Mutations in C9orf72, SOD1, TAR DNA binding protein 43 (TARDBP), and fused in sarcoma (FUS) genes are the four most common ones. During the last three decades, tremendous effort has been made worldwide to reveal biological pathways underlying the pathogenesis of these gene mutations in ALS/FTD. Accordingly, targeting etiologic genes (i.e., gene therapies) to suppress their toxic effects have been investigated widely. It includes four major strategies: (i) removal or inhibition of abnormal transcribed RNA using microRNA or antisense oligonucleotides (ASOs), (ii) degradation of abnormal mRNA using RNA interference (RNAi), (iii) decrease or inhibition of mutant proteins (e.g., using antibodies against misfolded proteins), and (iv) DNA genome editing with methods such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas). The promising results of these studies have led to the application of some of these strategies into ALS clinical trials, especially for C9orf72 and SOD1. In this paper, we will overview advances in gene therapy in ALS/FTD, focusing on C9orf72, SOD1, TARDBP, and FUS genes

    SARS-CoV-2 and nervous system: From pathogenesis to clinical manifestation

    No full text
    Since the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a growing body of evidence indicates that besides common COVID-19 symptoms, patients may develop various neurological manifestations affecting both the central and peripheral nervous systems as well as skeletal muscles. These manifestations can occur prior, during and even after the onset of COVID-19 general symptoms. In this Review, we discuss the possible neuroimmunological mechanisms underlying the nervous system and skeletal muscle involvement, and viral triggered neuroimmunological conditions associated with SARS-CoV-2, as well as therapeutic approaches that have been considered for these specific complications worldwide

    SARS-CoV-2 and nervous system: From pathogenesis to clinical manifestation

    No full text
    Since the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a growing body of evidence indicates that besides common COVID-19 symptoms, patients may develop various neurological manifestations affecting both the central and peripheral nervous systems as well as skeletal muscles. These manifestations can occur prior, during and even after the onset of COVID-19 general symptoms. In this Review, we discuss the possible neuroimmunological mechanisms underlying the nervous system and skeletal muscle involvement, and viral triggered neuroimmunological conditions associated with SARS-CoV-2, as well as therapeutic approaches that have been considered for these specific complications worldwide

    The Effect of Statin Therapy in Stroke Outcome: A Double Blind Clinical Trial

    No full text
    Background: Through a clinical trial we evaluated statin therapy benefits over stroke outcome. Methods: All patients with moderate stroke in Middle Cerebral Artery (MCA) were registered during February 2006 to February 2008, in Al Zahra Hospital, Isfahan, Iran. Among 55 patients who were enrolled in the present study, 25 subjects received 20 mg lovastatin daily, for 90 days after stroke attack (group 1) and 30 patients received no treatment (group 2). Patients were assessed at admission, 7 and 90 days after stroke. National Institutes of Health Stroke Scale (NIHSS) score was recorded in the day 1 and 7 in the hospital with a questionnaire and BARTHEL index was estimated 90 days after stroke incidence by a telephone survey or in an outpatient visit. Data were analyzed by means of c2 , ′t′ test and Independent ′t′ test. Results: NIHSS score measured in first day immediately after stroke attack and following 7 days, did not differ significantly in two groups. Moreover, BARTHEL index recorded within 90 days was not also different comparing group 1 and 2. After 90 days, no mortality was recorded in group 2, while one patient expired in group treating with statins (P-value>0.05). Discussion: We did not find statins administration to play any role in stroke recovery and consequent long-term prognosis. More researches with larger samples are needed to establish the possible favorable outcome of statins when administered in cerebrovascular diseases

    SARS-CoV-2 and Acute Cerebrovascular Events: An Overview

    Get PDF
    Since the coronavirus disease 2019 (COVID-19) pandemic, due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, accumulating evidence indicates that SARS-CoV-2 infection may be associated with various neurological manifestations, including acute cerebrovascular events (i.e., stroke and cerebral venous thrombosis). These events can occur prior to, during and even after the onset of COVID-19\u27s general symptoms. Although the mechanisms underlying the cerebrovascular complications in patients with COVID-19 are yet to be fully elucidated, the hypercoagulability state, inflammation and altered angiotensin-converting enzyme 2 (ACE-2) signaling in association with SARS-CoV-2 may play key roles. ACE-2 plays a critical role in preserving heart and brain homeostasis. In this review, we discuss the current state of knowledge of the possible mechanisms underlying the acute cerebrovascular events in patients with COVID-19, and we review the current epidemiological studies and case reports of neurovascular complications in association with SARS-CoV-2, as well as the relevant therapeutic approaches that have been considered worldwide. As the number of published COVID-19 cases with cerebrovascular events is growing, prospective studies would help gather more valuable insights into the pathophysiology of cerebrovascular events, effective therapies, and the factors predicting poor functional outcomes related to such events in COVID-19 patients
    corecore