850 research outputs found
Oestrogen exposure and breast cancer risk
Epidemiological and experimental evidence implicates oestrogens in the aetiology of breast cancer. Most established risk factors for breast cancer in humans probably act through hormone-related pathways, and increased concentrations of circulating oestrogens have been found to be strongly associated with increased risk for breast cancer in postmenopausal women. This article explores the evidence for the hypothesis that oestrogen exposure is a major determinant of risk for breast cancer. We review recent data on oestrogens and breast cancer risk, consider oestrogen-related risk factors and examine possible mechanisms that might account for the effects of oestrogen. Finally, we discuss how these advances might influence strategies for reducing the incidence of breast cancer
Diet and risk of diverticular disease in Oxford cohort of European Prospective Investigation into Cancer and Nutrition (EPIC): prospective study of British vegetarians and non-vegetarians
Objective To examine the associations of a vegetarian diet and dietary fibre intake with risk of diverticular disease
Association between physical activity and body fat percentage, with adjustment for BMI:a large cross-sectional analysis of UK Biobank
Objectives The objective of this study was to examine if, in the general population, physically active adults have less body fat after taking body mass index (BMI) into account.
Design A cross-sectional analysis of participants recruited into UK Biobank in 2006–2010.
Setting UK Biobank assessment centres throughout the UK.
Participants 119 230 men and 140 578 women aged 40–69 years, with complete physical activity information, and without a self-reported long-term illness, disability or infirmity.
Exposures Physical activity measured as excess metabolic equivalent (MET)-hours per week, estimated from a combination of walking, and moderate and vigorous physical activity. BMI from measured height and weight.
Main outcome measure Body fat percentage estimated from bioimpedance.
Results BMI and body fat percentage were highly correlated (r=0.85 in women; r=0.79 in men), and both were inversely associated with physical activity. Compared with <5 excess MET-hours/week at baseline, ≥100 excess MET-hours/week were associated with a 1.1 kg/m2 lower BMI (27.1 vs 28.2 kg/m2) and 2.8 percentage points lower body fat (23.4% vs 26.3%) in men, and 2.2 kg/m2 lower BMI (25.6 vs 27.7 kg/m2) and 4.0 percentage points lower body fat (33.9% vs 37.9%) in women. For a given BMI, greater physical activity was associated with lower average body fat percentage (for a BMI of 22.5–24.99 kg/m2: 2.0 (95% CI 1.8 to 2.2), percentage points lower body fat in men and 1.8 (95% CI 1.6 to 2.0) percentage points lower body fat in women, comparing ≥100 excess MET-hours per week with <5 excess MET-hours/week).
Conclusions In this sample of middle-aged adults, drawn from the general population, physical activity was inversely associated with BMI and body fat percentage. For people with the same BMI, those who were more active had a lower body fat percentage
The P2X7 Receptor is an Important Regulator of Extracellular ATP Levels
Controlled ATP release has been demonstrated from many neuronal and non-neuronal cell types. Once released, extracellular ATP acts on cells in a paracrine manner via purinergic receptors. Considerable evidence now suggests that extracellular nucleotides, signaling via P2 receptors, play important roles in bone homeostasis modulating both osteoblast and osteoclast function. In this study, we demonstrate that mouse osteoclasts and their precursors constitutively release ATP into their extracellular environment. Levels were highest at day 2 (precursor cells), possibly reflecting the high number of red blood cells and accessory cells present. Mature osteoclasts constitutively released ATP in the range 0.05–0.5 pmol/ml/cell. Both osteoclasts and osteoblasts express mRNA and protein for the P2X7 receptor. We found that in osteoclasts, expression levels are fourfold higher in mature cells relative to precursors, whilst in osteoblasts expression remains relatively constant during differentiation. Selective antagonists (0.1–100 μM AZ10606120, A438079, and KN-62) were used to determine whether this release was mediated via P2X7 receptors. AZ10606120, A438079, and KN-62, at 0.1–10 μM, decreased ATP release by mature osteoclasts by up to 70, 60, and 80%, respectively. No differences in cell viability were observed. ATP release also occurs via vesicular exocytosis; inhibitors of this process (1–100 μM NEM or brefeldin A) had no effect on ATP release from osteoclasts. P2X7 receptor antagonists (0.1–10 μM) also decreased ATP release from primary rat osteoblasts by up to 80%. These data show that ATP release via the P2X7 receptor contributes to extracellular ATP levels in osteoclast and osteoblast cultures, suggesting an important additional role for this receptor in autocrine/paracrine purinergic signaling in bone
Dietary amino acids and risk of stroke subtypes: a prospective analysis of 356,000 participants in seven European countries
Purpose
Previously reported associations of protein-rich foods with stroke subtypes have prompted interest in the assessment of individual amino acids. We examined the associations of dietary amino acids with risks of ischaemic and haemorrhagic stroke in the EPIC study.
Methods
We analysed data from 356,142 participants from seven European countries. Dietary intakes of 19 individual amino acids were assessed using validated country-specific dietary questionnaires, calibrated using additional 24-h dietary recalls. Multivariable-adjusted Cox regression models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) of ischaemic and haemorrhagic stroke in relation to the intake of each amino acid. The role of blood pressure as a potential mechanism was assessed in 267,642 (75%) participants.
Results
After a median follow-up of 12.9 years, 4295 participants had an ischaemic stroke and 1375 participants had a haemorrhagic stroke. After correction for multiple testing, a higher intake of proline (as a percent of total protein) was associated with a 12% lower risk of ischaemic stroke (HR per 1 SD higher intake 0.88; 95% CI 0.82, 0.94). The association persisted after mutual adjustment for all other amino acids, systolic and diastolic blood pressure. The inverse associations of isoleucine, leucine, valine, phenylalanine, threonine, tryptophan, glutamic acid, serine and tyrosine with ischaemic stroke were each attenuated with adjustment for proline intake. For haemorrhagic stroke, no statistically significant associations were observed in the continuous analyses after correcting for multiple testing.
Conclusion
Higher proline intake may be associated with a lower risk of ischaemic stroke, independent of other dietary amino acids and blood pressure
Diet, insulin-like growth factor-1 and cancer risk
Despite extensive research it has proved difficult to establish the role of diet in the aetiology of common types of cancer. Obesity and alcohol definitely increase the risk for several types of cancer, but the importance of particular foods and nutrients is not clear. Part of the difficulty is our poor understanding of the physiological changes that might mediate the effect of diet on cancer risk. Recent research in prospective studies with biobanks of stored blood samples has shown that the serum concentration of insulin-like growth factor-1 (IGF-1) is positively associated with the risk for both breast cancer in women and prostate cancer in men. It is also known that circulating IGF-1 concentrations can change in response to nutritional changes including energy and protein restriction, and some studies suggest that, even within well-nourished western populations, men and women with relatively high intakes of protein from dairy products have higher blood levels of IGF-1. These observations have led to the hypothesis that high intakes of protein from dairy products might increase the risk for some cancers by increasing the endogenous production of IGF-1. Further evaluation of this hypothesis requires clinical nutritional studies of the effects of diet on IGF-1 metabolism, and large epidemiological studies of cancer risk incorporating reliable measures of diet and serum IGF-1 concentrations.
Genetic predisposition to metabolically unfavourable adiposity and prostate cancer risk:A Mendelian randomization analysis
BACKGROUND
The associations of adiposity with aggressive prostate cancer risk are unclear. Using two-sample Mendelian randomization, we assessed the association of metabolically unfavourable adiposity (UFA), favourable adiposity (FA) and for comparison body mass index (BMI), with prostate cancer, including aggressive prostate cancer.
METHODS
We examined the association of these genetically predicted adiposity-related traits with risk of prostate cancer overall, aggressive and early onset disease using outcome summary statistics from the PRACTICAL consortium (including 15,167 aggressive cases).
RESULTS
In inverse-variance weighted models, there was little evidence that genetically predicted one standard deviation higher UFA, FA and BMI were associated with aggressive prostate cancer [OR: 0.85 (95% CI:0.61-1.19), 0.80 (0.53-1.23) and 0.97 (0.88-1.08), respectively]; these associations were largely consistent in sensitivity analyses accounting for horizontal pleiotropy. There was no strong evidence that genetically determined UFA, FA or BMI were associated with overall prostate cancer or early age of onset prostate cancer.
CONCLUSIONS
We did not find differences in the associations of UFA and FA with prostate cancer risk, which suggest that adiposity is unlikely to influence prostate cancer via the metabolic factors assessed; however, these did not cover some aspects related to metabolic health that may link obesity with aggressive prostate cancer, which should be explored in future studies
Description of the updated nutrition calculation of the Oxford WebQ questionnaire and comparison with the previous version among 207,144 participants in UK Biobank.
PURPOSE: The Oxford WebQ is a web-based 24-h dietary assessment method which has been used in UK Biobank and other large prospective studies. The food composition table used to calculate nutrient intakes has recently been replaced with the UK Nutrient Databank, which has food composition data closer in time to when participants completed the questionnaire, and new dietary variables were incorporated. Here we describe the updated version of the Oxford WebQ questionnaire nutrient calculation, and compare nutrient intakes with the previous version used. METHODS: 207,144 UK Biobank participants completed ≥ 1 Oxford WebQs, and means and standard deviations of nutrient intakes were averaged for all completed 24-h dietary assessments. Spearman correlations and weighted kappa statistics were used to compare the re-classification and agreement of nutrient intakes between the two versions. RESULTS: 35 new nutrients were incorporated in the updated version. Compared to the previous version, most nutrients were very similar in the updated version except for a few nutrients which showed a difference of > 10%: lower with the new version for trans-fat (- 20%), and vitamin C (- 15%), but higher for retinol (+ 42%), vitamin D (+ 26%) and vitamin E (+ 20%). Most participants were in the same (> 60%) or adjacent (> 90%) quintile of intake for the two versions. Except for trans-fat (r = 0.58, κ = 0.42), very high correlations were found between the nutrients calculated using the two versions (r > 0.79 and κ > 0.60). CONCLUSION: Small absolute differences in nutrient intakes were observed between the two versions, and the ranking of individuals was minimally affected, except for trans-fat
- …