115 research outputs found

    Nonlinear optical properties of photoresists for projection lithography

    Get PDF
    Optical beams are self-focused and self-trapped upon initiating crosslinking in photoresists. This nonlinear optical phenomenon is apparent only for low average optical intensities and produces index of refraction changes as large as 0.04. We propose using the self-focusing and self-trapping phenomenon in projection photolithography to enhance the resolution and depth of focus

    Self-written waveguides in photopolymerizable resins

    Full text link
    We study the optically-induced growth and interaction of self-written waveguides in a photopolymerizable resin. We investigate experimentally how the interaction depends on the mutual coherence and relative power of the input beams, and suggest an improved analytical model that describes the growth of single self-written waveguides and the main features of their interaction in photosensitive materials.Comment: 3 pages, 3 figure

    Holographic characterization of chain photopolymerization

    Get PDF
    A holographic characterization technique is developed in accordance with a general photopolymerization model. The technique allows detailed quantification of the chemical parameters, including their variation from the Trommsdorff effect. The holographic procedure is especially suited for studying the diffusion of the chemical reactants

    Self-enhanced diffraction from fixed photorefractive gratings during coherent reconstruction

    Get PDF
    We explore, theoretically and experimentally, the effects of self-enhancement (or self-depletion) of the diffraction which occurs during coherent reconstruction from fixed photorefractive gratings. These effects are caused by interference between a secondary grating, which forms between the readout and the reconstructed beams, and the fixed grating

    Selective page-addressable fixing of volume holograms in Sr0.75Ba0.25Nb2O6 crystals

    Get PDF
    We demonstrate selective fixing of volume holograms in photorefractive media. Each holographic page may be fixed individually and overwritten without destroying the other fixed pages. We present experimental results describing this process in Cr-doped Sr0.75Ba0.5Nb2O6 at room temperature, with hologram lifetimes exceeding 100 days during continuous readout with an intense beam (1 W/cm^2)

    Electric-field multiplexing/demultiplexing of volume holograms in photorefractive media

    Get PDF
    We propose a new method of volume hologram multiplexing/demultiplexing in noncentrosymmetric media. Volume holograms may be multiplexed by tuning the material parameters of the recording medium (such as refractive index or lattice parameters) while keeping the external parameters (wavelength and angles) fixed. For example, an external dc electric field alters the index of refraction through the electro-optic effect, effectively changing the recording and reconstruction wavelengths in the storage medium. Then the storage of holograms at different fields, hence different indices of refraction, is closely related to wavelength multiplexing. We demonstrate this concept in a preliminary experiment by electrically multiplexing two volume holograms in a strontium barium niobate crystal

    Coherent power combination of semiconductor lasers using optical phase-lock loops

    Get PDF
    Heterodyne optical phase-lock loops (OPLLs) enable the precise electronic control over the frequency and phase of a semiconductor laser (SCL) locked to a ldquomasterrdquo reference laser. One of the more interesting applications of OPLLs is the creation of coherent arrays by locking a number of ldquoslaverdquo SCLs to a common master laser. In this paper, we demonstrate the coherent power combination of various high-power semiconductor lasers using OPLLs in both the filled-aperture and tiled-aperture configurations. We further demonstrate the electronic control over the phase of each individual SCL using a voltage-controlled oscillator. It is feasible to combine a large number of SCLs using this approach, leading to compact, efficient, and cost-effective high-power and high-radiance optical sources

    Optical and electrical Barkhausen noise induced by recording ferroelectric domain holograms

    Get PDF
    Ferroelectric domain gratings with periods of the order of an optical wavelength are induced in strontium barium niobate by photorefractive space-charge fields. We measure the Barkhausen noise in current and diffraction efficiency while optically recording domain gratings and show that the two are strongly correlated in time. Significant random depolarization occurs under high-intensity illumination. We deduce the kinetics of the domain inversion process from the shape of the current transients

    Coherent beam combining with multilevel optical phase-locked loops

    Get PDF
    Coherent beam combining (CBC) technology holds the promise of enabling laser systems with very high power and near-ideal beam quality. We propose and demonstrate a novel servo system composed of multilevel optical phase lock loops. This servo system is based on entirely electronic components and consequently can be considerably more compact and less expensive compared to servo systems made of optical phase/frequency shifters. We have also characterized the noise of a 1064 nm Yb-doped fiber amplifier to determine its effect on the CBC and studied theoretically the efficiency of combining a large array of beams with the filled-aperture implementation. In a proof-of-concept experiment we have combined two 100 mW 1064 nm semiconductor lasers with an efficiency of 94%

    Coherent power combination of two Master-oscillator-power-amplifier (MOPA) semiconductor lasers using optical phase lock loops

    Get PDF
    Using heterodyne Optical Phase-Locked Loops (OPLLs), two 1W high power 1550 nm master-oscillator-power-amplifier (MOPA) semiconductor lasers operating as current controlled oscillators are phase-locked to a 1 mW reference laser. The signals of the two MOPAs are then coherently combined and their mutual coherence is studied. In each OPLL, the acquisition range is increased to +/-1.1GHz with the help of an aided- acquisition circuit. Control of the phase of a single slave MOPA is demonstrated using a RF phase shifter. The differential phase error between two MOPAs locked to the common reference laser is typically 22 degrees
    corecore