83 research outputs found

    Blood type gene locus has no influence on ACE association with Alzheimer's disease

    Get PDF
    The ABO blood group locus was recently found to contribute independently as well as via interactions with ACE gene variation to plasma levels of angiotensin converting enzyme (ACE). Variation in ACE has also previously been implicated as conferring susceptibility for Alzheimer’s disease (AD), but has also been proposed to confer risk via interactions with other as yet unknown genes. More recently, larger studies have not supported ACE as a risk factor for AD, while the role of ACE pathway in AD has come under increased levels of scrutiny with respect to various aspects of AD pathology and possible therapies. We explored the potential combined involvement of ABO and ACE variation in the genetic susceptibility of 2067 AD cases compared to 1376 non-demented elderly. Including the effects of ABO haplotype did not provide any evidence for the genetic association of ACE with AD

    Multiple Insulin Degrading Enzyme Variants Alter In Vitro Reporter Gene Expression

    Get PDF
    The insulin degrading enzyme (IDE) variant, v311 (rs6583817), is associated with increased post-mortem cerebellar IDE mRNA, decreased plasma β-amyloid (Aβ), decreased risk for Alzheimer's disease (AD) and increased reporter gene expression, suggesting that it is a functional variant driving increased IDE expression. To identify other functional IDE variants, we have tested v685, rs11187061 (associated with decreased cerebellar IDE mRNA) and variants on H6, the haplotype tagged by v311 (v10; rs4646958, v315; rs7895832, v687; rs17107734 and v154; rs4646957), for altered in vitro reporter gene expression. The reporter gene expression levels associated with the second most common haplotype (H2) successfully replicated the post-mortem findings in hepatocytoma (0.89 fold-change, p = 0.04) but not neuroblastoma cells. Successful in vitro replication was achieved for H6 in neuroblastoma cells when the sequence was cloned 5′ to the promoter (1.18 fold-change, p = 0.006) and 3′ to the reporter gene (1.29 fold change, p = 0.003), an effect contributed to by four variants (v10, v315, v154 and v311). Since IDE mediates Aβ degradation, variants that regulate IDE expression could represent good therapeutic targets for AD

    Replication of EPHA1 and CD33 associations with late-onset Alzheimer's disease: a multi-centre case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A recently published genome-wide association study (GWAS) of late-onset Alzheimer's disease (LOAD) revealed genome-wide significant association of variants in or near <it>MS4A4A, CD2AP, EPHA1 </it>and <it>CD33</it>. Meta-analyses of this and a previously published GWAS revealed significant association at <it>ABCA7 </it>and <it>MS4A</it>, independent evidence for association of <it>CD2AP, CD33 </it>and <it>EPHA1 </it>and an opposing yet significant association of a variant near <it>ARID5B</it>. In this study, we genotyped five variants (in or near <it>CD2AP, EPHA1, ARID5B</it>, and <it>CD33</it>) in a large (2,634 LOAD, 4,201 controls), independent dataset comprising six case-control series from the USA and Europe. We performed meta-analyses of the association of these variants with LOAD and tested for association using logistic regression adjusted by age-at-diagnosis, gender, and <it>APOE ε4 </it>dosage.</p> <p>Results</p> <p>We found no significant evidence of series heterogeneity. Associations with LOAD were successfully replicated for <it>EPHA1 </it>(rs11767557; OR = 0.87, p = 5 × 10<sup>-4</sup>) and <it>CD33 </it>(rs3865444; OR = 0.92, p = 0.049), with odds ratios comparable to those previously reported. Although the two <it>ARID5B </it>variants (rs2588969 and rs494288) showed significant association with LOAD in meta-analysis of our dataset (p = 0.046 and 0.008, respectively), the associations did not survive adjustment for covariates (p = 0.30 and 0.11, respectively). We had insufficient evidence in our data to support the association of the <it>CD2AP </it>variant (rs9349407, p = 0.56).</p> <p>Conclusions</p> <p>Our data overwhelmingly support the association of <it>EPHA1 </it>and <it>CD33 </it>variants with LOAD risk: addition of our data to the results previously reported (total n > 42,000) increased the strength of evidence for these variants, providing impressive p-values of 2.1 × 10<sup>-15 </sup>(<it>EPHA1</it>) and 1.8 × 10<sup>-13 </sup>(<it>CD33</it>).</p

    A candidate regulatory variant at the TREM gene cluster associates with decreased Alzheimer's disease risk and increased TREML1 and TREM2 brain gene expression

    Get PDF
    Introduction: We hypothesized that common Alzheimer's disease (AD)-associated variants within the triggering receptor expressed on myeloid (TREM) gene cluster influence disease through gene expression. Methods: Expression microarrays on temporal cortex and cerebellum from ∼400 neuropathologically diagnosed subjects and two independent RNAseq replication cohorts were used for expression quantitative trait locus analysis. Results: A variant within a DNase hypersensitive site 5′ of TREM2, rs9357347-C, associates with reduced AD risk and increased TREML1 and TREM2 levels (uncorrected P = 6.3 × 10−3 and 4.6 × 10−2, respectively). Meta-analysis on expression quantitative trait locus results from three independent data sets (n = 1006) confirmed these associations (uncorrected P = 3.4 × 10−2 and 3.5 × 10−3, Bonferroni-corrected P = 6.7 × 10−2 and 7.1 × 10−3, respectively). Discussion: Our findings point to rs9357347 as a functional regulatory variant that contributes to a protective effect observed at the TREM locus in the International Genomics of Alzheimer's Project genome-wide association study meta-analysis and suggest concomitant increase in TREML1 and TREM2 brain levels as a potential mechanism for protection from AD

    Concordant association of insulin degrading enzyme gene (IDE) variants with IDE mRNA, abeta, and alzheimer's disease.

    Get PDF
    Background: The insulin-degrading enzyme gene (IDE) is a strong functional and positional candidate for late onset Alzheimer's disease (LOAD). Methodology/Principal findings: We examined conserved regions of IDE and its 10 kb flanks in 269 AD cases and 252 controls thereby identifying 17 putative functional polymorphisms. These variants formed eleven haplotypes that were tagged with ten variants. Four of these showed significant association with IDE transcript levels in samples from 194 LOAD cerebella. The strongest, rs6583817, which has not previously been reported, showed unequivocal association (p = 1.5x10(-8), fold-increase = 2.12,); the eleven haplotypes were also significantly associated with transcript levels (global p = 0.003). Using an in vitro dual luciferase reporter assay, we found that rs6583817 increases reporter gene expression in Be(2)-C (p = 0.006) and HepG2 (p = 0.02) cell lines. Furthermore, using data from a recent genome-wide association study of two Croatian isolated populations (n = 1,879), we identified a proxy for rs6583817 that associated significantly with decreased plasma Abeta40 levels (ss = -0.124, p = 0.011) and total measured plasma Abeta levels (b = -0.130, p = 0.009). Finally, rs6583817 was associated with decreased risk of LOAD in 3,891 AD cases and 3,605 controls. (OR = 0.87, p = 0.03), and the eleven IDE haplotypes (global p = 0.02) also showed significant association. Conclusions: Thus, a previously unreported variant unequivocally associated with increased IDE expression was also associated with reduced plasma Ass40 and decreased LOAD susceptibility. Genetic association between LOAD and IDE has been difficult to replicate. Our findings suggest that targeted testing of expression SNPs (eSNPs) strongly associated with altered transcript levels in autopsy brain samples may be a powerful way to identify genetic associations with LOAD that would otherwise be difficult to detect

    Evaluating the role of pathogenic dementia variants in posterior cortical atrophy

    Get PDF
    Posterior cortical atrophy (PCA) is an understudied visual impairment syndrome most often due to “posterior Alzheimer's disease (AD)” pathology. Case studies detected mutations in PSEN1, PSEN2, GRN, MAPT, and PRNP in subjects with clinical PCA. To detect the frequency and spectrum of mutations in known dementia genes in PCA, we screened 124 European-American subjects with clinical PCA (n = 67) or posterior AD neuropathology (n = 57) for variants in genes implicated in AD, frontotemporal dementia, and prion disease using NeuroX, a customized exome array. Frequencies in PCA of the variants annotated as pathogenic or potentially pathogenic were compared against ∼4300 European-American population controls from the NHLBI Exome Sequencing Project. We identified 2 rare variants not previously reported in PCA, TREM2 Arg47His, and PSEN2 Ser130Leu. No other pathogenic or potentially pathogenic variants were detected in the screened dementia genes. In this first systematic variant screen of a PCA cohort, we report 2 rare mutations in TREM2 and PSEN2, validate our previously reported APOE ε4 association, and demonstrate the utility of NeuroX

    Genetic Evidence Implicates the Immune System and Cholesterol Metabolism in the Aetiology of Alzheimer's Disease

    Get PDF
    Background 1Late Onset Alzheimer's disease (LOAD) is the leading cause of dementia. Recent large genome-wide association studies (GWAS) identified the first strongly supported LOAD susceptibility genes since the discovery of the involvement of APOE in the early 1990s. We have now exploited these GWAS datasets to uncover key LOAD pathophysiological processes. Methodology We applied a recently developed tool for mining GWAS data for biologically meaningful information to a LOAD GWAS dataset. The principal findings were then tested in an independent GWAS dataset. Principal Findings We found a significant overrepresentation of association signals in pathways related to cholesterol metabolism and the immune response in both of the two largest genome-wide association studies for LOAD. Significance Processes related to cholesterol metabolism and the innate immune response have previously been implicated by pathological and epidemiological studies of Alzheimer's disease, but it has been unclear whether those findings reflected primary aetiological events or consequences of the disease process. Our independent evidence from two large studies now demonstrates that these processes are aetiologically relevant, and suggests that they may be suitable targets for novel and existing therapeutic approaches

    Linking protective GAB2 variants, increased cortical GAB2 expression and decreased Alzheimer's Disease pathology

    Get PDF
    GRB-associated binding protein 2 (GAB2) represents a compelling genome-wide association signal for late-onset Alzheimer’s disease (LOAD) with reported odds ratios (ORs) ranging from 0.75–0.85. We tested eight GAB2 variants in four North American Caucasian case-control series (2,316 LOAD, 2,538 controls) for association with LOAD. Meta-analyses revealed ORs ranging from (0.61–1.20) with no significant association (all p>0.32). Four variants were hetergeneous across the populations (all p<0.02) due to a potentially inflated effect size (OR = 0.61–0.66) only observed in the smallest series (702 LOAD, 209 controls). Despite the lack of association in our series, the previously reported protective association for GAB2 remained after meta-analyses of our data with all available previously published series (11,952-22,253 samples; OR = 0.82–0.88; all p<0.04). Using a freely available database of lymphoblastoid cell lines we found that protective GAB2 variants were associated with increased GAB2 expression (p = 9.5×10−7−9.3×10−6). We next measured GAB2 mRNA levels in 249 brains and found that decreased neurofibrillary tangle (r = −0.34, p = 0.0006) and senile plaque counts (r = −0.32, p = 0.001) were both good predictors of increased GAB2 mRNA levels albeit that sex (r = −0.28, p = 0.005) may have been a contributing factor. In summary, we hypothesise that GAB2 variants that are protective against LOAD in some populations may act functionally to increase GAB2 mRNA levels (in lymphoblastoid cells) and that increased GAB2 mRNA levels are associated with significantly decreased LOAD pathology. These findings support the hypothesis that Gab2 may protect neurons against LOAD but due to significant population heterogeneity, it is still unclear whether this protection is detectable at the genetic level

    Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease

    Get PDF
    We sought to identify new susceptibility loci for Alzheimer's disease through a staged association study (GERAD+) and by testing suggestive loci reported by the Alzheimer's Disease Genetic Consortium (ADGC) in a companion paper. We undertook a combined analysis of four genome-wide association datasets (stage 1) and identified ten newly associated variants with P ≤ 1 × 10−5. We tested these variants for association in an independent sample (stage 2). Three SNPs at two loci replicated and showed evidence for association in a further sample (stage 3). Meta-analyses of all data provided compelling evidence that ABCA7 (rs3764650, meta P = 4.5 × 10−17; including ADGC data, meta P = 5.0 × 10−21) and the MS4A gene cluster (rs610932, meta P = 1.8 × 10−14; including ADGC data, meta P = 1.2 × 10−16) are new Alzheimer's disease susceptibility loci. We also found independent evidence for association for three loci reported by the ADGC, which, when combined, showed genome-wide significance: CD2AP (GERAD+, P = 8.0 × 10−4; including ADGC data, meta P = 8.6 × 10−9), CD33 (GERAD+, P = 2.2 × 10−4; including ADGC data, meta P = 1.6 × 10−9) and EPHA1 (GERAD+, P = 3.4 × 10−4; including ADGC data, meta P = 6.0 × 10−10)
    corecore