30 research outputs found

    Evaluating the role of pathogenic dementia variants in posterior cortical atrophy

    Get PDF
    Posterior cortical atrophy (PCA) is an understudied visual impairment syndrome most often due to “posterior Alzheimer's disease (AD)” pathology. Case studies detected mutations in PSEN1, PSEN2, GRN, MAPT, and PRNP in subjects with clinical PCA. To detect the frequency and spectrum of mutations in known dementia genes in PCA, we screened 124 European-American subjects with clinical PCA (n = 67) or posterior AD neuropathology (n = 57) for variants in genes implicated in AD, frontotemporal dementia, and prion disease using NeuroX, a customized exome array. Frequencies in PCA of the variants annotated as pathogenic or potentially pathogenic were compared against ∼4300 European-American population controls from the NHLBI Exome Sequencing Project. We identified 2 rare variants not previously reported in PCA, TREM2 Arg47His, and PSEN2 Ser130Leu. No other pathogenic or potentially pathogenic variants were detected in the screened dementia genes. In this first systematic variant screen of a PCA cohort, we report 2 rare mutations in TREM2 and PSEN2, validate our previously reported APOE ε4 association, and demonstrate the utility of NeuroX

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Diffusion tractography of the subcortical auditory system in a postmortem human brain

    No full text
    <p>The subcortical auditory system is challenging to identify with standard human brain imaging techniques: MRI signal decreases toward the center of the brain as well as at higher resolution, both of which are necessary for imaging small brainstem auditory structures.</p><p>Using high-resolution diffusion-weighted MRI, we asked:</p><ul><li><p>Can we identify auditory structures and connections in high-resolution ex vivo images?</p></li><li><p>Which structures and connections can be mapped in vivo?</p></li></ul

    Ipsilateral and contralateral phonetic context effects

    No full text
    Abstract Duplex perception experiments explore how a speech unit is processed simultaneously as a speech and non-speech sound. Two adjacent speech sounds do not need to be heard in the same ear for phonetic context effects to be active. Our experiments combine these paradigms by presenting two syllables dichotically with formants of the target syllable presented contralaterally to the rest of the target. When hearing an ambiguous stimulus between /d/ and /g/, subjects are more likely to hear /g/ after /al/ and /d/ after /ar/. This context effect is significant regardless of whether the context is presented to the same ear as the base target or the isolated third formant transition, demonstrating that the auditory system must combine streams before completing all phonetic analysis. Additionally, there is a greater context effect when the formant transitions are presented to the ipsilateral ear as the context segment than when they are presented contralaterally. The difference in compensation effects between Experiments 1 and 2 (where the formant transition is presented contralaterally to the context) shows that some phonetic processing occurs before the left and right auditory streams converge. Separating the formant chirp (responsible for cuing /d/ vs. /g/) from the context is more crucial to analysis than separating the base target from the context. Phonetic context effects, while working adequately across streams, are more influential within one stream

    Data

    No full text
    BigBrain and in-vivo data derivatives used to create figures in the paper

    Resting cerebral oxygen metabolism exhibits archetypal network features

    Get PDF
    Standard magnetic resonance imaging approaches offer high-resolution but indirect measures of neural activity, limiting understanding of the physiological processes associated with imaging findings. Here, we used calibrated functional magnetic resonance imaging during the resting state to recover low-frequency fluctuations of the cerebral metabolic rate of oxygen (CMRO2). We tested whether functional connections derived from these fluctuations exhibited organization properties similar to those established by previous standard functional and anatomical connectivity studies. Seventeen participants underwent 20 min of resting imaging during dual-echo, pseudocontinuous arterial spin labeling, and blood-oxygen-level dependent (BOLD) signal acquisition. Participants also underwent a 10 min normocapnic and hypercapnic procedure. Brain-wide, CMRO2 low-frequency fluctuations were subjected to graph-based and voxel-wise functional connectivity analyses. Results demonstrated that connections derived from resting CMRO2 fluctuations exhibited complex, small-world topological properties (i.e., high integration and segregation, cost efficiency) consistent with those observed in previous studies using functional and anatomical connectivity approaches. Voxel-wise CMRO2 connectivity also exhibited spatial patterns consistent with four targeted resting-state subnetworks: two association (i.e., frontoparietal and default mode) and two perceptual (i.e., auditory and occipital-visual). These are the first findings to support the use of calibration-derived CMRO2 low-frequency fluctuations for detecting brain-wide organizational properties typical of healthy participants. We discuss interpretations, advantages, and challenges in using calibration-derived oxygen metabolism signals for examining the intrinsic organization of the human brain

    Decreased Cerebellar-Orbitofrontal Connectivity Correlates with Stuttering Severity: Whole-Brain Functional and Structural Connectivity Associations with Persistent Developmental Stuttering

    Get PDF
    Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had stronger functional connectivity between cerebellum and thalamus than people with fluent speech, while stutterers with the least severe symptoms had greater functional connectivity between left cerebellum and left orbitofrontal cortex (OFC). Additionally, people who stutter had decreased functional and white matter connectivity among the perisylvian auditory, motor, and speech planning regions compared to typical speakers, but greater functional connectivity between the right basal ganglia and bilateral temporal auditory regions. Structurally, disfluency ratings were negatively correlated with white matter connections to left perisylvian regions and to the brain stem. Overall, we found increased connectivity among subcortical and reward network structures in people who stutter compared to controls. These connections were negatively correlated with stuttering severity, suggesting the involvement of cerebellum and OFC may underlie successful compensatory mechanisms by more fluent stutterers.National Institutes of Health (U.S.) (NIH grant R01-DC007683)National Institutes of Health (U.S.) (NIH grant R56-DC0010849)National Institutes of Health (U.S.) (NIH grant T32- DC000038

    Decreased cerebellar-orbitofrontal connectivity correlates with stuttering severity: Whole-brain functional and structural connectivity associations with persistent developmental stuttering

    No full text
    Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here, we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had stronger functional connectivity between cerebellum and thalamus than people with fluent speech, while stutterers with the least severe symptoms had greater functional connectivity between left cerebellum and left orbitofrontal cortex. Additionally, people who stutter had decreased functional and white matter connectivity among the perisylvian auditory, motor, and speech planning regions compared to typical speakers, but greater functional connectivity between the right basal ganglia and bilateral temporal auditory regions. Structurally, disfluency ratings were negatively correlated with white matter connections to left perisylvian regions and to the brain stem. Overall, we found increased connectivity among subcortical and reward network structures in people who stutter compared to controls. These connections were negatively correlated with stuttering severity, suggesting the involvement of cerebellum and orbitofrontal cortex may underlie successful compensatory mechanisms by more fluent stutterers

    Experiences Deploying Parallel Applications on a Large-scale Grid

    No full text
    Abstract Background One of the most reported neural features of autism spectrum disorder (ASD) is the alteration of multiple long-range white matter fiber tracts, as assessed by diffusion-weighted imaging and indexed by reduced fractional anisotropy (FA). Recent methodological advances, however, have shown that this same pattern of reduced FA may be an artifact resulting from excessive head motion and poorer data quality and that aberrant structural connectivity in children with ASD is confined to the right inferior longitudinal fasciculus (ILF). This study aimed at replicating the observation of reduced FA along the right ILF in ASD, while controlling for group differences in head motion and data quality. In addition, we explored associations between reduced FA in the right ILF and quantitative ASD characteristics, and the involvement of the right ILF in visual processing, which is known to be altered in ASD. Method Global probabilistic tractography was performed on diffusion-weighted imaging data of 17 adolescent boys with ASD and 17 typically developing boys, matched for age, performance IQ, handedness, and data quality. Four tasks were administered to measure various aspects of visual information processing, together with questionnaires assessing ASD characteristics. Group differences were examined and the neural data were integrated with previously published findings using Bayesian statistics to quantify evidence for replication and to pool data and thus increase statistical power. (Partial) correlations were calculated to investigate associations between measures. Results The ASD group showed consistently reduced FA only in the right ILF and slower performance on the visual search task. Bayesian statistics pooling data across studies confirmed that group differences in FA were confined to the right ILF only, with the evidence for altered FA in the left ILF being indecisive. Lower FA in the right ILF tended to covary with slower visual search and a more fragmented part-oriented processing style. Individual differences in FA of the right ILF were not reliably associated with the severity of ASD traits after controlling for clinical status. Conclusion Our findings support the growing evidence for reduced FA along a specific fiber tract in ASD, the right ILF
    corecore