800 research outputs found
Ambulatory care adverse events and preventable adverse events leading to a hospital admission.
BACKGROUND: Most healthcare in the US is delivered in the ambulatory care setting, but the epidemiology of errors and adverse events in ambulatory care is understudied.
METHODS: Using the population-based data from the Colorado and Utah Medical Practices Study, we identified adverse events that occurred in an ambulatory care setting and led to hospital admission. Proportions with 95% CIs are reported.
RESULTS: We reviewed 14,700-hospital discharge records and found 587 adverse events of which 70 were ambulatory care adverse events (AAEs) and 31 were ambulatory care preventable adverse events (APAEs). When weighted to the general population, there were 2608 AAEs and 1296 (44.3%) APAEs in Colorado and Utah, USA, in 1992. APAEs occurred most commonly in physicians\u27 offices (43.1%, range 46.8-27.8), the emergency department (32.3%, 46.1-18.5) and at home (13.1%, 23.1-3.1). APAEs in day surgery were less common (7.1%, 13.6-0.6) but caused the greatest harm to patients. The types of APAEs were broadly distributed among missed or delayed diagnoses (36%, 50.2-21.8), surgery (24.1%, 36.7-11.5), non-surgical procedures (14.6%, 25.0-4.2), medication (13.1%, 23.1-3.1) and therapeutic events (12.3%, 22.0-2.6). Overall, 10% of the APAEs resulted in serious permanent injury or death. The proportion of APAEs that resulted in death was 31.8% for general internal medicine, 22.5% for family practice and 16.7% for emergency medicine.
CONCLUSION: An estimated 75,000 hospitalisations per year are due to preventable adverse events that occur in outpatient settings in the US, resulting in 4839 serious permanent injuries and 2587 deaths
Constraints on the Obliquities of Kepler Planet-Hosting Stars
Stars with hot Jupiters have obliquities ranging from 0-180 degrees, but
relatively little is known about the obliquities of stars with smaller planets.
Using data from the California-Kepler Survey, we investigate the obliquities of
stars with planets spanning a wide range of sizes, most of which are smaller
than Neptune. First, we identify 156 planet hosts for which measurements of the
projected rotation velocity (vsini) and rotation period are both available. By
combining estimates of v and vsini, we find nearly all the stars to be
compatible with high inclination, and hence, low obliquity (less than about 20
degrees). Second, we focus on a sample of 159 hot stars (> 6000K) for which
vsini is available but not necessarily the rotation period. We find 6 stars for
which vsini is anomalously low, an indicator of high obliquity. Half of these
have hot Jupiters, even though only 3% of the stars that were searched have hot
Jupiters. We also compare the vsini distribution of the hot stars with planets
to that of 83 control stars selected without prior knowledge of planets. The
mean vsini of the control stars is lower than that of the planet hosts by a
factor of approximately pi/4, as one would expect if the planet hosts have low
obliquities. All these findings suggest that the Kepler planet-hosting stars
generally have low obliquities, with the exception of hot stars with hot
Jupiters.Comment: AJ, in pres
Physical characteristics and non-keplerian orbital motion of "propeller" moons embedded in Saturn's rings
We report the discovery of several large "propeller" moons in the outer part
of Saturn's A ring, objects large enough to be followed over the 5-year
duration of the Cassini mission. These are the first objects ever discovered
that can be tracked as individual moons, but do not orbit in empty space. We
infer sizes up to 1--2 km for the unseen moonlets at the center of the
propeller-shaped structures, though many structural and photometric properties
of propeller structures remain unclear. Finally, we demonstrate that some
propellers undergo sustained non-keplerian orbit motion. (Note: This arXiv
version of the paper contains supplementary tables that were left out of the
ApJL version due to lack of space).Comment: 9 pages, 4 figures; Published in ApJ
Adipocyte JAK2 Regulates Hepatic Insulin Sensitivity Independently of Body Composition, Liver Lipid Content, and Hepatic Insulin Signaling.
Disruption of hepatocyte growth hormone (GH) signaling through disruption of Jak2 (JAK2L) leads to fatty liver. Previously, we demonstrated that development of fatty liver depends on adipocyte GH signaling. We sought to determine the individual roles of hepatocyte and adipocyte Jak2 on whole-body and tissue insulin sensitivity and liver metabolism. On chow, JAK2L mice had hepatic steatosis and severe whole-body and hepatic insulin resistance. However, concomitant deletion of Jak2 in hepatocytes and adipocytes (JAK2LA) completely normalized insulin sensitivity while reducing liver lipid content. On high-fat diet, JAK2L mice had hepatic steatosis and insulin resistance despite protection from diet-induced obesity. JAK2LA mice had higher liver lipid content and no protection from obesity but retained exquisite hepatic insulin sensitivity. AKT activity was selectively attenuated in JAK2L adipose tissue, whereas hepatic insulin signaling remained intact despite profound hepatic insulin resistance. Therefore, JAK2 in adipose tissue is epistatic to liver with regard to insulin sensitivity and responsiveness, despite fatty liver and obesity. However, hepatocyte autonomous JAK2 signaling regulates liver lipid deposition under conditions of excess dietary fat. This work demonstrates how various tissues integrate JAK2 signals to regulate insulin/glucose and lipid metabolism
Missense-depleted regions in population exomes implicate ras superfamily nucleotide-binding protein alteration in patients with brain malformation.
Genomic sequence interpretation can miss clinically relevant missense variants for several reasons. Rare missense variants are numerous in the exome and difficult to prioritise. Affected genes may also not have existing disease association. To improve variant prioritisation, we leverage population exome data to identify intragenic missense-depleted regions (MDRs) genome-wide that may be important in disease. We then use missense depletion analyses to help prioritise undiagnosed disease exome variants. We demonstrate application of this strategy to identify a novel gene association for human brain malformation. We identified de novo missense variants that affect the GDP/GTP-binding site of ARF1 in three unrelated patients. Corresponding functional analysis suggests ARF1 GDP/GTP-activation is affected by the specific missense mutations associated with heterotopia. These findings expand the genetic pathway underpinning neurologic disease that classically includes FLNA. ARF1 along with ARFGEF2 add further evidence implicating ARF/GEFs in the brain. Using functional ontology, top MDR-containing genes were highly enriched for nucleotide-binding function, suggesting these may be candidates for human disease. Routine consideration of MDR in the interpretation of exome data for rare diseases may help identify strong genetic factors for many severe conditions, infertility/reduction in reproductive capability, and embryonic conditions contributing to preterm loss
O-Band Subwavelength Grating Filters in a Monolithic Photonics Technology
The data communications industry has begun transitioning from electrical to
optical interconnects in datacenters in order to overcome performance
bottlenecks and meet consumer needs. To mitigate the costs associated with this
change and achieve performance for 5G and beyond, it is crucial to explore
advanced photonic devices that can enable high-bandwidth interconnects via
wavelength-division multiplexing (WDM) in photonic integrated circuits.
Subwavelength grating (SWG) filters have shown great promise for WDM
applications. However, the small feature sizes necessary to implement these
structures have prohibited them from penetrating into industrial applications.
To explore the manufacturability and performance of SWG filters in an
industrial setting, we fabricate and characterize O-band subwavelength grating
filters using the monolithic photonics technology at GLOBALFOUNDRIES (GF). We
demonstrate a low drop channel loss of -1.2 dB with a flat-top response, a high
extinction ratio of -30 dB, a 3 dB channel width of 5 nm and single-source
thermal tunability without shape distortion. This filter structure was designed
using elements from the product design kit provided by GF and functions in a
compact footprint of 0.002 mm2 with a minimum feature size of 150 nm.Comment: 4 pages, 3 figure
- …