9 research outputs found
The Alzheimer's Disease-Associated Amyloid β-Protein Is an Antimicrobial Peptide
Background: The amyloid -protein (A) is believed to be the key mediator of Alzheimer's disease (AD) pathology. A is most often characterized as an incidental catabolic byproduct that lacks a normal physiological role. However, A has been shown to be a specific ligand for a number of different receptors and other molecules, transported by complex trafficking pathways, modulated in response to a variety of environmental stressors, and able to induce pro-inflammatory activities. Methodology/Principal Findings: Here, we provide data supporting an in vivo function for A as an antimicrobial peptide (AMP). Experiments used established in vitro assays to compare antimicrobial activities of A and LL-37, an archetypical human AMP. Findings reveal that A exerts antimicrobial activity against eight common and clinically relevant microorganisms with a potency equivalent to, and in some cases greater than, LL-37. Furthermore, we show that AD whole brain homogenates have significantly higher antimicrobial activity than aged matched non-AD samples and that AMP action correlates with tissue A levels. Consistent with A-mediated activity, the increased antimicrobial action was ablated by immunodepletion of AD brain homogenates with anti-A antibodies. Conclusions/Significance: Our findings suggest A is a hitherto unrecognized AMP that may normally function in the innate immune system. This finding stands in stark contrast to current models of A-mediated pathology and has important implications for ongoing and future AD treatment strategies
Central regulation of photosensitive membrane turnover in the lateral eye of Limulus, II: octopamine acts via adenylate cyclase/cAMP-dependent protein kinase to prime the retina for transient rhabdom shedding.
Why photoreceptors turn over a portion of their photoreceptive membrane daily is not clear; however, failure to do so properly leads to retinal degeneration in vertebrates and invertebrates. Little is known about the molecular mechanisms that regulate shedding and renewal of photoreceptive membrane. Photoreceptive cells in the lateral eye of the horseshoe crab Limulus turn over their photoreceptive membrane (rhabdom) in brief, synchronous burst in response to dawn each morning. Transient rhabdom shedding (TRS), the first phase of rhabdom turnover in Limulus, is triggered by dawn, but requires a minimum of 3-5 h of overnight priming from the central circadian clock (Chamberlain & Barlow, 1984). We determined previously that the clock primes the lateral eye for TRS using the neurotransmitter octopamine (OA) (Khadilkar et al., 2002), and report here that OA primes the eye for TRS through a G(s)-coupled, adenylate cyclase (AC)/cyclic adenosine 3\u27,5\u27-monophosphate (cAMP)/cAMP-dependent protein kinase (PKA) signaling cascade. Long-term intraretinol injections (6-7 h @ 1.4 microl/min) of the AC activator forskolin, or the cAMP analogs Sp-cAMP[s] and 8-Br-cAmp primed the retina for TRS in eyes disconnected from the circadian clock, and/or in intact eyes during the day when the clock is quiescent. This suggests that OA primes the eye for TRS by stimulating an AC-mediated rise in intracellular cAMP concentration ([cAMP]i). Co-injection of SQ 22,536, an AC inhibitor, or the PKA inhibitors H-89 and PKI (14-22) with OA effectively antagonized octopaminergic priming by reducing the number of photoreceptors primed for TRS and the amount of rhabdom shed by those photoreceptors compared with eyes treated with OA alone. Our data suggest that OA primes the lateral eye for TRS in part through long-term phosphorylation of a PKA substrate
Recommended from our members
Amyloid-β Protein Protects Against Microbial Infection In Transgenic C. elegans and 5XFAD Mice
The amyloid-β peptide (Aβ) is a key protein in Alzheimer's disease (AD) pathology. We previously reported in vitro evidence suggesting Aβ is an antimicrobial peptide. Here we provide the first in vivo evidence showing high Aβ production protects against fungal and bacterial infections in mouse and nematode AD models. In Aβ-null mouse models low Aβ production is associated with attenuated resistance to infection. Regarding mechanism, we show Aβ oligomerization, a behavior traditionally viewed as intrinsically pathological, is necessary for the antimicrobial activities of the peptide. Soluble Aβ oligomers bind microbial cell walls, developing protofibrils inhibit pathogen host cell adhesion, and, finally, proteaseresistant β-amyloid fibrils agglutinate and entrap the invading microbes. We also show that infection of 5XFAD mouse brain with S. Typhimurium bacteria rapidly seeds and dramatically accelerates β-amyloid deposition, which closely co-localizes with invading bacteria. Collectively, our findings raise the intriguing possibility that β-amyloid plays a protective role in innate immunity and infectious or sterile inflammatory stimuli may drive amyloidosis. These data suggest a dual protective/damaging role for Aβ, as has been described for other antimicrobial peptides