2,850 research outputs found
Examination of Bar Velocity in Barbell Back Squat
The aim of the study was to examine repetition to repetition changes of bar velocity and its variations from barbell back squat. Participants (N=19) performed back squat with a relative intensity of 78-80% of 1 RM. Bar velocity was captured using wireless device (PUSHtm) placed on their forearm. Data were collected from 3 sets of 10 repetitions. One-way repeated measures ANOVA was used to identify the velocity changes over 10 repetitions. Statistical significance was found (F(1,17)=45.06.~ 0 . 0 0 0 1 )T.h is indicates that the bar velocity decreased significantly over the 10 repetitions. At the same time, coefficient of variance also increased as the repetitions went higher, indicating that there were differences in individual responses of bar velocity changes. Further examination will be aimed to investigate the bar velocity changes from various strength level of individuals
Skeletal Muscle Hypertrophy, Maximal Strength, and Rate of Force Development: Effects of Resistance Training Loading Strategy
Abstract available in the Annual Coaches and Sport Science College
Positive Impulse Phase versus Propulsive Impulse Phase: Correlations between Asymmetry and Countermovement Jump Performance
The relationship between asymmetry and performance is still undetermined in the literature. Methods of assessing asymmetry have been inconsistent and focused on the analysis of jumping asymmetry. Dual ground reaction forces are prevalent in athlete monitoring, though underutilized in asymmetry research. The purpose of this study was to assess the relationship of countermovement jump (CMJ) impulse asymmetry to performance in collegiate soccer athletes. Male and female athletes were selected from an ongoing athlete research repository database of NCAA D-I soccer athletes. All athletes contributed two maximal effort unweighted (CMJ0) and weighted countermovement jumps (CMJ20) using the mean for calculations. Propulsive phase asymmetry scores (PrPAS) and positive impulse asymmetry scores (PIAS) were calculated to determine the magnitude of asymmetry for each prospective phase. Statistically significant correlations were found between CMJ0 jump height and unweighted PIAS (r = −0.43) in females. Males had statistically significant correlations between CMJ20 jump height and weighted PIAS (r = −0.49). Neither unweighted PrPAS nor weighted PrPAS produced statistically significant correlations (r \u3c 0.26) to their prospective jump heights. When assessing CMJ asymmetry, it is recommended to conduct both weighted and unweighted CMJ testing, utilizing PIAS as the metric to be assessed
Superconductivity in Co-doped LaFeAsO
Here we report the synthesis and basic characterization of LaFe1-xCoxAsO for
several values of x. The parent phase LaFeAsO orders antiferromagnetically (TN
~ 145 K). Replacing Fe with Co is expected to both electron dope the system and
introduce disorder in the FeAs layer. For x = 0.05 antiferromagnetic order is
destroyed and superconductivity is observed at Tconset = 11.2 K. For x = 0.11
superconductivity is observed at Tc(onset) = 14.3 K, and for x = 0.15 Tc = 6.0
K. Superconductivity is not observed for x = 0.2 and 0.5, but for x = 1, the
material appears to be ferromagnetic (Tc ~ 56 K) as judged by magnetization
measurements. We conclude that Co is an effective dopant to induce
superconductivity. Somewhat surprisingly, the system appears to tolerate
considerable disorder in the FeAs planes.Comment: 19 pages, 9 figure
Increases in Variation of Barbell Kinematics Are Observed with Increasing Intensity in a Graded Back Squat Test
The purpose of the current study was two-fold: (1) To examine the variation in velocity and power with increasing intensity in the back squat among subjects; and (2) To explore individual subject characteristics as possible explanations for variations of velocity in the back squat. Fourteen recreationally trained male subjects with experience in the back squat agreed to participate in the study (age = 25.0 ± 2.6 years, height = 178.9 ± 8.1 cm, body mass = 88.2 ± 15.8 kg). One-repetition maximums (1RM) were performed for each subject on force platforms with four linear position transducers attached to the barbell. The 1RM assessment was immediately preceded by warm-up sets at 65%, 75%, 85%, and 95% of estimated 1RM for 5, 3, 2, and 1 repetitions, respectively. Mean concentric velocity (MCV) and mean power were recorded for each intensity condition and were analyzed using Pearson correlation to determine the relationship between each variable and relative intensity (%1RM). Statistically significant negative relationships existed between %1RM and MCV (r = −0.892) and mean power (r = −0.604). Between-subject coefficient of variation tended to increase as %1RM increased for both MCV and mean power. These results suggest that MCV is superior to mean power as an indicator of relative intensity in the back squat. Additionally, the between-subject variation observed at higher intensities for MCV and mean power support the use of velocity ranges by strength and conditioning coaches
Validity of the Short Recovery and Stress Scale in Collegiate Weightlifters
Introduction: Monitoring an athlete’s stress and recovery state across sequential training bouts can be used to gauge fitness and fatigue levels (i.e., preparedness). Previous studies have used jumping performance, biochemical markers, and questionnaires to estimate preparedness. However, self-report questionnaires are the most common due to economical and practical means. The Short Recovery and Stress Scale (SRSS) is an 8-item questionnaire ideal for monitoring; however, convergent validity of the SRSS with physiological and performance measures needs to be investigated. Purpose: Thus, the purpose of this study was to determine whether changes in collegiate weightlifter’s training volume-load, biochemical markers, and jumping performance correlate to changes in the SRSS. Methods: 12 collegiate weightlifters (8 males, 4 females) with \u3e1yr of competition experience trained for 4 weeks and were tested at the beginning of each week (T1-T4). Training volume-load with displacement (VLd) was monitored weekly for all exercises. Testing was conducted following an overnight fast and included hydration, SRSS (0-6 scale with 6 indicating highest recovery and stress), and blood draws (resting testosterone (T), cortisol (C), T:C, creatine kinase (CK)) followed by unloaded (0kg) and loaded (20kg) squat jumps (SJ) on force platforms. Pearson correlation coefficients were calculated between the change in SRSS scores and all other variables from T1-T2, T1-T3, and T1-T4. Alpha level was set at p\u3c 0.05. Results: Inverse relationships were observed between changes in recovery items and C (r= -0.61 to -0.72, p\u3c 0.05), and unloaded and loaded SJ height and relative peak power (r= -0.59 to -0.64, p\u3c 0.05) from T1 to T2, and T1 to T3. Similarly, positive relationships were observed between changes in stress items and C (r=0.61 to 0.72, p\u3c 0.05), and unloaded and loaded SJ height and relative peak power (r=0.58 to 0.84, p\u3c 0.05) across all time points. No significant relationships were observed between changes in SRSS items and VLd or T, T:C, CK. Conclusion: Relationships between changes in some SRSS items and C agree with previous findings highlighting C as an indicator of training stress. Nonetheless, the non-significant relationships between changes in SRSS items, VLd, and other biochemical markers disagrees with previous findings. This may partly be explained by the smaller undulations in VLd in the current study, which is characteristic of actual training. Further, relationships between changes in some SRSS items and jumping performance were opposite of what was expected indicating athlete’s perception of their stress and recovery state does not always correspond with their ability to perform. Practical Application: These results provide some evidence for the convergent validity of the SRSS. Nonetheless, weightlifting coaches should be cautious in using results from a single test to estimate an athlete’s preparedness. Thus, we recommend the SRSS be included as part of a multi-dimensional monitoring program for weightlifters
Relationship Between Concentric Velocities at Varying Intensity in the Back Squat Using a Wireless Inertial Sensor
Objectives: The purpose of this study was to examine the relationship of velocities in the back squat between one repetition maximum (1RM) and submaximally loaded repetition maximum (RM) conditions, specifically in regard to what has been described as the minimal velocity threshold (MVT). The MVT describes a minimum concentric velocity that an individual must reach or surpass in order to successfully complete a repetition. Design: To test the presence of a MVT, participants were tested for 1RM and RM back squat ability. The mean concentric veloci ties (MCV) of the last successful repetition of each condition were then compared. Methods: Fourteen male participants familiar with the back squat volunteered to participate in the current study (age = 25.0 y ± 2.6, height = 178.9 cm ± 8.1, body mass = 88.2 kg ± 15.8). The mean concentric velocity (MCV) during the last successful repetition from each testing condition was considered for the comparison. Results: Results indicated a non-significant negative relationship of MCV between the 1RM and RM conditions (r = -0.135), no statistical difference between testing conditions (p = 0.266), with a small-to-moderate effect size (d = 0.468). Conclusions: The results of this study suggest that MVT should be further investigated to enhance its use in the practical setting. Additionally, coaches considering using a velocity-based approach for testing athletes should use data from either 1RM or RM conditions, but not both interchangeably. Coaches should be cautious when considering group averages or comparing velocity data between athletes, which may not be appropriate based on our results
Lean Body Mass and Muscle Cross-Sectional Area Adaptations Among College Age Males With Different Strength Levels Across 11 Weeks of Block Periodized Programmed Resistance Training
The block periodization training paradigm has been shown to produce enhanced gains in strength and power. The purpose of this study is to assess resistance training induced alterations in lean body mass and cross-sectional area using a block periodization training model among individuals (n = 15) of three differing strength levels (high, moderate and low) based on one repetition maximum back squat relative to body weight. A 3 × 5 mixed-design ANOVA was used to examine within-and between-subject changes in cross-sectional area (CSA), lean body mass (LBM), lean body mass adjusted (LBMadjusted) and total body water (TBW) over an 11-week resistance training program. LBMadjusted is total body water subtracted from lean body mass. The ANOVA revealed no statistically significant between-group differences in any independent variable (p \u3e 0.05). Within-group effects showed statistically significant increases in cross-sectional area (p \u3c 0.001), lean body mass (p \u3c 0.001), lean body mass adjusted (p \u3c 0.001) and total body water (p \u3c 0.001) from baseline to post intervention: CSA: 32.7 cm2 ± 8.6; 36.3 cm2 ± 7.2, LBM: 68.0 kg ± 9.5; 70.6 kg ± 9.4, LBMadjusted: 20.4 kg ± 3.1; 21.0 kg ± 3.3 and TBW: 49.8 kg ± 6.9; 51.7 kg ± 6.9. In conclusion, the results of this study suggest subjects experienced an increase in both lean body mass and total body water, regardless of strength level, over the course of the 11-week block periodized program. Gains in lean body mass and cross-sectional area may be due to edema at the early onset of training
Lean Body Mass and Muscle Cross-Sectional Area Adaptations Among College Age Males with Different Strength Levels across 11 Weeks of Block Periodized Programmed Resistance Training
The block periodization training paradigm has been shown to produce enhanced gains in strength and power. The purpose of this study is to assess resistance training induced alterations in lean body mass and cross-sectional area using a block periodization training model among individuals (n = 15) of three differing strength levels (high, moderate and low) based on one repetition maximum back squat relative to body weight. A 3 × 5 mixed-design ANOVA was used to examine within-and between-subject changes in cross-sectional area (CSA), lean body mass (LBM), lean body mass adjusted (LBMadjusted) and total body water (TBW) over an 11-week resistance training program. LBMadjusted is total body water subtracted from lean body mass. The ANOVA revealed no statistically significant between-group differences in any independent variable (p > 0.05). Within-group effects showed statistically significant increases in cross-sectional area (p < 0.001), lean body mass (p < 0.001), lean body mass adjusted (p ˂ 0.001) and total body water (p < 0.001) from baseline to post intervention: CSA: 32.7 cm2 ± 8.6; 36.3 cm2 ± 7.2, LBM: 68.0 kg ± 9.5; 70.6 kg ± 9.4, LBMadjusted: 20.4 kg ± 3.1; 21.0 kg ± 3.3 and TBW: 49.8 kg ± 6.9; 51.7 kg ± 6.9. In conclusion, the results of this study suggest subjects experienced an increase in both lean body mass and total body water, regardless of strength level, over the course of the 11-week block periodized program. Gains in lean body mass and cross-sectional area may be due to edema at the early onset of training
The Effect of Training Status on Adaptations to 11 Weeks of Block Periodization Training
This work is licensed under a Creative Commons Attribution 4.0 International License.Some controversy exists as to the most efficacious method of training to achieve enhanced levels of sport performance. Controversy concerning the efficacy of periodization and especially block periodization (BP) likely stems from the use of poorly or untrained subjects versus trained who may differ in their responses to a stimulus. The purpose of this study was to investigate the effect of training status on performance outcomes resulting from 11 weeks of BP training. Fifteen males were recruited for this study and placed into strong (age = 24.3 ± 1.9 years., body mass (BM) = 87.7 ± 8.7 kg, squat: body mass = 1.96 ± 0.16), moderate (age = 25.3 ± 2.7 years., body mass = 100.2 ± 15.5 kg, squat: body mass = 1.46 ± 0.14), or weak (age = 23.2 ± 3.9 yrs., body mass = 83.5 ± 17.1 kg, squat: body mass = 1.17 ± 0.07) groups based on relative strength. Testing was completed at baseline, and after each block which consisted of 1 repetition maximum (1RM) squat, 0 kg static jump (SJ), 0 kg countermovement jump (CMJ), 20 kg SJ, and 20 kg CMJ. Absolute and relative strength were strongly correlated with rates of improvement for absolute strength, relative strength, 0 kg, and 20 kg vertical jumps. All subjects substantially improved back squat (p < 0.001), relative back squat (p < 0.001) with large–very large effect sizes between groups for percent change favoring the weak group over the moderate and strong group for all performance variables. All subjects showed statistically significant improvements in 0 kg SJ (p < 0.001), 0 kg CMJ (p < 0.001), 20 kg SJ (p = 0.002), and 20 kg CMJ (p < 0.001). Statistically significant between group differences were noted for both 20 kg SJ (p = 0.01) and 20 kg CMJ (p = 0.043) with the strong group statistically greater jump heights than the weak group. The results of this study indicate BP training is effective in improving strength and explosive ability. Additionally, training status may substantially alter the response to a resistance training program
- …