47 research outputs found

    Thermal behaviour of selected flavour ingredients and additives under simulated cigarette combustion and tobacco heating conditions

    Get PDF
    An experimental method of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) is proposed to evaluate the fate of selected flavour compounds in low-temperature (300°C) tobacco heating conditions. The thermal behaviour of five flavouring compounds (citronellol, menthol, tartaric acid, cinnamic acid, and guaiacol) was studied under conditions to simulate low-temperature tobacco heating at 300°C, and compared with results obtained using simulated cigarette-combustion conditions with a temperature program up to 900°C. The impact of oxygen and nitrogen atmospheres on the thermal transfer and breakdown patterns was also investigated. It was established that the four flavouring compounds of high volatility (citronellol, menthol, cinnamic acid, and guaiacol) evaporated to a high degree (88-100 %) during the low- and high-temperature experiments, as well. Guaiacol was the most stable compound under the test conditions; only 0.3 % decomposition was detected at 900°C with the oxidative atmosphere. Thermal decomposition reactions were substantially less extensive at the low-temperature heating conditions than with the high-temperature pyrolysis and simulated cigarette combustion. Citronellol and cinnamic acid produced about 1.5 % decomposition products, while menthol produced 0.8 %. In general, dehydrogenation reactions were more pronounced in the oxidative atmosphere, while aromatisation was significant in the nitrogen atmosphere, and at high temperatures. More oxo-compounds and less aromatic hydrocarbons were formed in the oxidative atmosphere. Other types of reactions took place with tartaric acid, due to its low volatility. Extensive formation of light carboxylic acids was observed at the low temperature, and cyclic compounds were also formed in addition to carbon oxides and water under both nitrogen and oxidative atmospheres. Intermolecular reactions are proposed to explain these observations. At high temperatures the pyrolysis products of tartaric acid were the same as at low temperatures, but in the oxidative atmosphere more carboxylic acids and less aldehydes were formed than in pure nitrogen. These results demonstrate the flavour compound’s thermal stability depends strongly on the exact thermal history (heating temperature, heating duration and gas atmosphere) that they are exposed to. The information obtained will be of interests in understanding the thermal behaviour of these and other flavour compounds used in tobacco heating products

    Reduction of aldehydes and hydrogen cyanide yields in mainstream cigarette smoke using an amine functionalised ion exchange resin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cigarette smoking is a well recognized cause of diseases such as lung cancer, chronic obstructive pulmonary disease and cardiovascular disease. Of the more than 5000 identified species in cigarette smoke, at least 150 have toxicological activity. For example, formaldehyde and acetaldehyde have been assigned as Group 1 and Group 2B carcinogens by IARC, and hydrogen cyanide has been identified as a respiratory and cardiovascular toxicant. Active carbon has been shown to be an effective material for the physical adsorption of many of the smoke volatile species. However, physical adsorption of acetaldehyde, formaldehyde and also hydrogen cyanide from smoke is less effective using carbon. Alternative methods for the removal of these species from cigarette smoke are therefore of interest. A macroporous, polystyrene based ion-exchange resin (Diaion<sup>®</sup>CR20) with surface amine group functionality has been investigated for its ability to react with aldehydes and HCN in an aerosol stream, and thus selectively reduce the yields of these compounds (in particular formaldehyde) in mainstream cigarette smoke.</p> <p>Results</p> <p>Resin surface chemistry was characterized using vapour sorption, XPS, TOF-SIMS and <sup>15</sup>N NMR. Diaion<sup>®</sup>CR20 was found to have structural characteristics indicating weak physisorption properties, but sufficient surface functionalities to selectively remove aldehydes and HCN from cigarette smoke. Using 60 mg of Diaion<sup>®</sup>CR20 in a cigarette cavity filter gave reductions in smoke formaldehyde greater than 50% (estimated to be equivalent to >80% of the formaldehyde present in the smoke vapour phase) independent of a range of flow rates. Substantial removal of HCN (>80%) and acetaldehyde (>60%) was also observed. The performance of Diaion<sup>®</sup>CR20 was found to be consistent over a test period of 6 months. The overall adsorption for the majority of smoke compounds measured appeared to follow a pseudo-first order approximation to second order kinetics.</p> <p>Conclusions</p> <p>This study has shown that Diaion<sup>®</sup>CR20 is a highly selective and efficient adsorbent for formaldehyde, acetaldehyde and HCN in cigarette smoke. The reductions for these compounds were greater than those achieved using an active carbon. The results also demonstrate that chemisorption can be an effective mechanism for the removal of certain vapour phase toxicants from cigarette smoke.</p

    Randomised, open-label, phase II study of Gemcitabine with and without IMM-101 for advanced pancreatic cancer

    Get PDF
    Background: Immune Modulation and Gemcitabine Evaluation-1, a randomised, open-label, phase II, first-line, proof of concept study (NCT01303172), explored safety and tolerability of IMM-101 (heat-killed Mycobacterium obuense; NCTC 13365) with gemcitabine (GEM) in advanced pancreatic ductal adenocarcinoma. Methods: Patients were randomised (2 : 1) to IMM-101 (10 mg ml−l intradermally)+GEM (1000 mg m−2 intravenously; n=75), or GEM alone (n=35). Safety was assessed on frequency and incidence of adverse events (AEs). Overall survival (OS), progression-free survival (PFS) and overall response rate (ORR) were collected. Results: IMM-101 was well tolerated with a similar rate of AE and serious adverse event reporting in both groups after allowance for exposure. Median OS in the intent-to-treat population was 6.7 months for IMM-101+GEM v 5.6 months for GEM; while not significant, the hazard ratio (HR) numerically favoured IMM-101+GEM (HR, 0.68 (95% CI, 0.44–1.04, P=0.074). In a pre-defined metastatic subgroup (84%), OS was significantly improved from 4.4 to 7.0 months in favour of IMM-101+GEM (HR, 0.54, 95% CI 0.33–0.87, P=0.01). Conclusions: IMM-101 with GEM was as safe and well tolerated as GEM alone, and there was a suggestion of a beneficial effect on survival in patients with metastatic disease. This warrants further evaluation in an adequately powered confirmatory study

    Suitability of external controls for drug evaluation in Duchenne muscular dystrophy

    Get PDF
    OBJECTIVE: To evaluate the suitability of real-world data (RWD) and natural history data (NHD) for use as external controls in drug evaluations for ambulatory Duchenne muscular dystrophy (DMD). METHODS: The consistency of changes in the 6-minute walk distance (Δ6MWD) was assessed across multiple clinical trial placebo arms and sources of NHD/RWD. Six placebo arms reporting 48-week Δ6MWD were identified via literature review and represented 4 sets of inclusion/exclusion criteria (n = 383 patients in total). Five sources of RWD/NHD were contributed by Universitaire Ziekenhuizen Leuven, DMD Italian Group, The Cooperative International Neuromuscular Research Group, ImagingDMD, and the PRO-DMD-01 study (n = 430 patients, in total). Mean Δ6MWD was compared between each placebo arm and RWD/NHD source after subjecting the latter to the inclusion/exclusion criteria of the trial for baseline age, ambulatory function, and steroid use. Baseline covariate adjustment was investigated in a subset of patients with available data. RESULTS: Analyses included ∼1,200 patient-years of follow-up. Differences in mean Δ6MWD between trial placebo arms and RWD/NHD cohorts ranged from -19.4 m (i.e., better outcomes in RWD/NHD) to 19.5 m (i.e., worse outcomes in RWD/NHD) and were not statistically significant before or after covariate adjustment. CONCLUSIONS: We found that Δ6MWD was consistent between placebo arms and RWD/NHD subjected to equivalent inclusion/exclusion criteria. No evidence for systematic bias was detected. These findings are encouraging for the use of RWD/NHD to augment, or possibly replace, placebo controls in DMD trials. Multi-institution collaboration through the Collaborative Trajectory Analysis Project rendered this study feasible

    The composition of contemporary American and Swedish smokeless tobacco products

    Full text link
    Abstract The major components of 70 brands of smokeless tobacco products (STPs) from Sweden and the US were determined to provide greater understanding of the general chemical composition of these products. Various styles of STPs were examined: loose and portion snus from Sweden, and chewing tobacco, dry snuff, moist snuff, hard pellet, soft pellet and plug from the US. The components analysed were major STP components such as water, nicotine, sugars, humectants, sodium ions, chloride ions and ash. The relative quantities of the components varied significantly between different styles of STP. The major component of moist snuff and Swedish loose snus is water. With Swedish portion snus water and pouch material comprise more than half of the product mass; with chewing tobaccos water and sugars comprise around 60% of the products. With these STPs, tobacco was a minor component (30–35%) of the product mass. By way of contrast, tobacco comprised the majority (around 70–90%) of the product mass with dry snuff, hard pellet and soft pellet products. Additives such as sugars, propylene glycol, glycerol, and sodium chloride comprised up to around 12% of the STPs, except for plug and chewing tobaccos where sugars comprised 15–30% by mass of the STP on average. Significant disagreements were found amongst alternative methods of determining water/moisture content for STPs. In particular the oven method, commonly used to determine moisture in tobacco, gave significantly higher values than the Karl Fischer water method when propylene glycol was present. Smaller but similar differences were found using the Near-Infrared method. Choice of measurement technique has important consequences for accuracy of toxicant levels when reporting on a dry-weight basis, a commonly used parameter in smokeless tobacco research and emerging regulatory standards. Conversion to a DWB was also found to produce a preferential bias between and within different STP categories in favour of drier products. These data provide greater understanding of differences in the compositions of contemporary smokeless tobacco products, and demonstrate challenges associated with conversion of actual product contents to dry weight basis values

    Effect of Machine Smoking Intensity and Filter Ventilation Level on Gas-Phase Temperature Distribution Inside a Burning Cigarette

    Get PDF
    Accurate measurements of cigarette coal temperature are essential to understand the thermophysical and thermo-chemical processes in a burning cigarette. The last system-atic studies of cigarette burning temperature measurements were conducted in the mid-1970s. Contemporary cigarettes have evolved in design features and multiple standard machine-smoking regimes have also become available, hence there is a need to re-examine cigarette combustion. In this work, we performed systematic measurements on gas-phase temperature of burning cigarettes using an improved fine thermocouple technique. The effects of machine-smoking parameters (puff volume and puff duration) and filter ventilation levels were studied with high spatial and time resolutions during single puffs. The experimental results were presented in a number of differ-ent ways to highlight the dynamic and complex thermal processes inside a burning coal. A mathematical distribution equation was used to fit the experimental temperature data. Extracting and plotting the distribution parameters against puffing time revealed complex temperature profiles under different coal volume as a function of puffing intensities or filter ventilation levels. By dividing the coal volume prior to puffing into three temperature ranges (low-temperature from 200 to 400 °C, medium-temperature from 400 to 600 °C, and high-temperature volume above 600 °C) by following their development at different smoking regimes, useful mechanistic details were obtained. Finally, direct visualisation of the gas-phase temperature through detailed temperature and temperature gradient contour maps provided further insights into the complex thermo-physics of the burning coal. [Beitr. Tabakforsch. Int. 26 (2014) 191-203

    Gas-Particle Partitioning of Formaldehyde in Mainstream Cigarette Smoke

    Full text link
    A diffusion denuder apparatus has been used to investigate the gas-particle partitioning of formaldehyde, acetaldehyde, acrolein and crotonaldehyde in cigarette mainstream smoke (MS), compounds that are of interest owing to their toxicity and near quantitative retention in the body during cigarette smoking. Formaldehyde showed the best performance in denuder experiments with simple aldehyde-air mixtures owing to the relatively fast rate of the heterogeneous reaction formaldehyde(g) + dinitrophenylhydrazine(s) → hydrazone(s). Analysis with the Gormley-Kennedy equation revealed that formaldehyde denuder removal approached, but did not attain, complete efficiency even under optimized operational conditions. Acetaldehyde, acrolein and crotonaldehyde were trapped with considerably lower efficiency than formaldehyde under the denuder conditions used, and more effective denuder wall coatings would be required to examine gas-particle partitioning of these other carbonyls. The proportion of formaldehyde in the smoke particulate phase initially entering the denuder was > 99%, but loss of formaldehyde from the smoke particles was relatively rapid leading to 35%–61% deposition over the denuder length. The temperature dependence of formaldehyde deposition in the denuder was well predicted using Henry's law constant for aqueous formaldehyde solutions. These observed properties of formaldehyde are primarily due to reversible reactions of formaldehyde with water in cigarette smoke leading to the much less volatile species methanediol, its oligomers and hydrate. These data suggest that cigarette smoke inhalation is likely to expose the deeper-lung generations of smokers to greater relative formaldehyde exposure, and greater genotoxic risk at those generations than might occur through inhalation of formaldehyde vapour alone
    corecore