4 research outputs found

    Virtual monitoring in CF – the importance of continuous monitoring in a multi-organ chronic condition

    Get PDF
    Cystic Fibrosis (CF) is a chronic life-limiting condition that affects multiple organs within the body. Patients must adhere to strict medication regimens, physiotherapy, diet, and attend regular clinic appointments to manage their condition effectively. This necessary but burdensome requirement has prompted investigations into how different digital health technologies can enhance current care by providing the opportunity to virtually monitor patients. This review explores how virtual monitoring has been harnessed for assessment or performance of physiotherapy/exercise, diet/nutrition, symptom monitoring, medication adherence, and wellbeing/mental-health in people with CF. This review will also briefly discuss the potential future of CF virtual monitoring and some common barriers to its current adoption and implementation within CF. Due to the multifaceted nature of CF, it is anticipated that this review will be relevant to not only the CF community, but also those investigating and developing digital health solutions for the management of other chronic diseases

    Individualized approach to elexacaftor/tezacaftor/ivacaftor dosing in cystic fibrosis, in response to self-reported anxiety and neurocognitive adverse events: A case series

    Get PDF
    The prevalence of mental health disorders is high among people with Cystic Fibrosis. The psychological symptoms in CF are associated with poor adherence, worse treatment outcomes, and greater health utilization/cost. Mental health and neurocognitive Adverse Events (AEs) have been reported with all available Cystic Fibrosis Transmembrane conductance Regulator (CFTR) modulators in small groups of patients. We report our experience with a dose reduction strategy in 10 of our patients on elexacaftor/tezacaftor/ivacaftor (7.9% of total number of patients) who self-reported developing intense anxiety, irritability, sleep disturbance and/or mental slowness after initiation of full dose treatment. Standard dose elexacaftor/tezacaftor/ivacaftor resulted in 14.3 points improvement in mean Percent Predicted Forced Expiratory Volume in 1 s (ppFEV1), and a mean difference in sweat chloride of −39.3 mmol/L. We initially discontinued and/or reduced therapy according to the AEs severity, with a subsequent planned dose escalation every 4–6 weeks guided by sustainability of clinical effectiveness, absence of AEs recurrence, and patients’ preferences. Clinical parameters including lung function and sweat chloride were monitored for up to 12 weeks to assess ongoing clinical response to the reduced dose regimen. Dose reduction resulted in resolution of self-reported mental/psychological AEs, without loss of clinical effectiveness (ppFEV1 was 80.7% on standard dose, and 83.4% at 12 weeks on reduced dose; sweat chloride was 33.4 and 34 mmol/L on standard and reduced dose, respectively). Furthermore, in a subgroup of patients who completed 24 weeks of the reduced dose regimen, repeat low dose Computed Tomography imaging showed a significant response when compared to pre-initiation of elexacaftor/tezacaftor/ivacaftor

    Oral and dental late effects in survivors of childhood cancer: a Children’s Oncology Group report

    No full text
    corecore