32 research outputs found

    Budd-Chiari syndrome and post-traumatic diaphragmatic hernia

    Get PDF

    Print and media review

    No full text

    Diet and Gut Microbiota Interaction-Derived Metabolites and Intrahepatic Immune Response in NAFLD Development and Treatment

    No full text
    Nonalcoholic fatty liver disease (NAFLD) with pathogenesis ranging from nonalcoholic fatty liver (NAFL) to the advanced form of nonalcoholic steatohepatitis (NASH) affects about 25% of the global population. NAFLD is a chronic liver disease associated with obesity, type 2 diabetes, and metabolic syndrome, which is the most increasing factor that causes hepatocellular carcinoma (HCC). Although advanced progress has been made in exploring the pathogenesis of NAFLD and penitential therapeutic targets, no therapeutic agent has been approved by Food and Drug Administration (FDA) in the United States. Gut microbiota-derived components and metabolites play pivotal roles in shaping intrahepatic immunity during the progression of NAFLD or NASH. With the advance of techniques, such as single-cell RNA sequencing (scRNA-seq), each subtype of immune cells in the liver has been studied to explore their roles in the pathogenesis of NAFLD. In addition, new molecules involved in gut microbiota-mediated effects on NAFLD are found. Based on these findings, we first summarized the interaction of diet-gut microbiota-derived metabolites and activation of intrahepatic immunity during NAFLD development and progression. Treatment options by targeting gut microbiota and important molecular signaling pathways are then discussed. Finally, undergoing clinical trials are selected to present the potential application of treatments against NAFLD or NASH

    Cancer Immunotherapy and Delivery System: An Update

    No full text
    With an understanding of immunity in the tumor microenvironment, immunotherapy turns out to be a powerful tool in the clinic to treat many cancers. The strategies applied in cancer immunotherapy mainly include blockade of immune checkpoints, adoptive transfer of engineered cells, such as T cells, natural killer cells, and macrophages, cytokine therapy, cancer vaccines, and oncolytic virotherapy. Many factors, such as product price, off-target side effects, immunosuppressive tumor microenvironment, and cancer cell heterogeneity, affect the treatment efficacy of immunotherapies against cancers. In addition, some treatments, such as chimeric antigen receptor (CAR) T cell therapy, are more effective in treating patients with lymphoma, leukemia, and multiple myeloma rather than solid tumors. To improve the efficacy of targeted immunotherapy and reduce off-target effects, delivery systems for immunotherapies have been developed in past decades using tools such as nanoparticles, hydrogel matrix, and implantable scaffolds. This review first summarizes the currently common immunotherapies and their limitations. It then synopsizes the relative delivery systems that can be applied to improve treatment efficacy and minimize side effects. The challenges, frontiers, and prospects for applying these delivery systems in cancer immunotherapy are also discussed. Finally, the application of these approaches in clinical trials is reviewed

    The Species of Gut Bacteria Associated with Antitumor Immunity in Cancer Therapy

    No full text
    Both preclinical and clinical studies have demonstrated that the modulation of gut microbiota could be a promising strategy for enhancing antitumor immune responses and reducing resistance to immunotherapy in cancer. Various mechanisms, including activation of pattern recognition receptors, gut commensals-produced metabolites and antigen mimicry, have been revealed. Different gut microbiota modulation strategies have been raised, such as fecal microbiota transplantation, probiotics, and dietary selection. However, the identification of gut bacteria species that are either favorable or unfavorable for cancer therapy remains a major challenge. Herein, we summarized the findings related to gut microbiota species observed in the modulation of antitumor immunity. We also discussed the different mechanisms underlying different gut bacteria’s functions and the potential applications of these bacteria to cancer immunotherapy in the future
    corecore