47 research outputs found

    Real-time fault-tolerant moving horizon air data estimation for the RECONFIGURE benchmark

    No full text
    This paper proposes a real-time fault-tolerant estimation approach for combined sensor fault diagnosis and air data reconstruction. Due to simultaneous influence of winds and latent faults on monitored sensors, it is challenging to address the tradeoff between robustness to wind disturbances and sensitivity to sensor faults. As opposed to conventional fault-tolerant estimators that do not consider any constraints, we propose a constrained fault-tolerant estimator using moving horizon estimation (MHE). By exploiting wind bounds according to the weather or flight conditions, this approach improves fault sensitivity without sacrificing disturbance robustness. This improvement is attributed to active inequality constraints caused by faults, as shown in sensitivity analysis of the formulated MHE problem. The challenge of real-time nonlinear MHE is addressed by adopting an efficient structure-exploiting algorithm within a real-time iteration scheme. In order to facilitate the industrial validation and verification, the algorithm is implemented using an Airbus graphical symbol library to be compliant with the actual flight control computer, and its feasibility of real-time computation has been validated. The simulation results on the RECONFIGURE benchmark, which is a high-fidelity Airbus simulator, over a wide range of the flight envelop show the efficacy of the proposed approach.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Team Tamas Keviczk

    Distributed control of heterogeneous underactuated mechanical systems

    No full text
    We show how passivity-based control by interconnection and damping assignment (IDA-PBC) can be used as a design procedure to derive distributed control laws for undirected connected networks of underactuated and fully-actuated heterogeneous mechanical systems. With or without leaders, agents are able to reach a stationary formation in the coordinate of interest, even if each agent has different dynamics, provided that each agent satisfies three matching conditions for cooperation. If these are satisfied, we show how existing single-system IDA-PBC solutions can be used to construct distributed control laws, thereby enabling distributed control design for a large class of applications. The procedure is illustrated for a network of flexible-joint robots and a network of heterogeneous inverted pendulum-cart systems.Team Tamas Keviczk

    Predictive Control of Autonomous Greenhouses: A Data-Driven Approach

    No full text
    In the past, many greenhouse control algorithms have been developed. However, the majority of these algorithms rely on an explicit parametric model description of the greenhouse. These models are often based on physical laws such as conservation of mass and energy and contain many parameters which should be identified. Due to the complex and nonlinear dynamics of greenhouses, these models might not be applicable to control greenhouses other than the ones for which these models have been designed and identified. Hence, in current horticultural practice these control algorithms are scarcely used. Therefore, the need rises for a control algorithm which does not rely on a parametric system representation but rather on input/output data of the greenhouse system, hereby establishing a way to control the system with unknown or unmodeled dynamics. A recently proposed algorithm, Data-Enabled Predictive Control (DeePC), is able to replace system identification, state estimation and future trajectory prediction by one single optimization framework. The algorithm exploits a non-parametric model constructed solely from input/output data of the system. In this work, we apply this algorithm in order to control the greenhouse climate. It is shown that in numerical simulation the DeePC algorithm is able to control the greenhouse climate while only relying on past input/output data. The algorithm is bench-marked against the Nonlinear Model Predictive (NMPC) algorithm in order to show the differences between a predictive control algorithm that has direct access to the nonlinear greenhouse simulation model and a purely data-driven predictive control algorithm. Both algorithms are compared based on reference tracking accuracy and computational time. Furthermore, it is shown in numerical simulation that the DeePC algorithm is able to cope with changing dynamics within the greenhouse system throughout the crop cycle.Accepted Author ManuscriptTeam Tamas Keviczk

    Energy management for building climate comfort in uncertain smart thermal grids with aquifer thermal energy storage

    No full text
    In this paper, we present an energy management framework for building climate comfort systems that are interconnected in a grid via aquifer thermal energy storage (ATES) systems in the presence of two types of uncertainty namely private and common uncertainty sources. The ATES system is considered as a large-scale storage system that can be a heat source or sink, or a storage for thermal energy While the private uncertainty source refers to uncertain thermal energy demand of individual buildings, the common uncertainty source describes the uncertain common resource pool (ATES) between neighbors. To this end, we develop a large-scale uncertain coupled dynamical model to predict the thermal energy imbalance in a network of interconnected building climate comfort systems together with mutual interactions between the local ATES systems. A finite-horizon mixed-integer quadratic optimization problem with multiple chance constraints is formulated at each sampling time, which is in general a non-convex problem and hard to solve. We then provide a computationally tractable framework based on an extension to the so-called robust randomized approach which offers a less conservative solution for a problem with multiple chance constraints. A simulation study is provided to compare two different configurations, namely: completely decoupled, and centralized solutions.Team Tamas Keviczk

    Distributed IDA-PBC for a class of nonholonomic mechanical systems

    No full text
    Nonholonomic mechanical systems encompass a large class of practically interesting robotic structures, such as wheeled mobile robots, space manipulators, and multi-fingered robot hands. However, few results exist on the cooperative control of such systems in a generic, distributed approach. In this work we extend a recently developed distributed Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC) method to such systems. More specifically, relying on port-Hamiltonian system modelling for networks of mechanical systems, we propose a full-state stabilization control law for a class of nonholonomic systems within the framework of distributed IDA-PBC. This enables the cooperative control of heterogeneous, underactuated and nonholonomic systems with a unified control law. This control law primarily relies on the notion of Passive Configuration Decomposition (PCD) and a novel, non-smooth desired potential energy function proposed here. A low-level collision avoidance protocol is also implemented in order to achieve dynamic inter-agent collision avoidance, enhancing the practical relevance of this work. Theoretical results are tested in different simulation scenarios in order to highlight the applicability of the derived method.Mechanical, Maritime and Materials EngineeringTeam Tamas Keviczk

    An MILP approach for persistent coverage tasks with multiple robots and performance guarantees

    No full text
    Multiple robots are increasingly being considered in a variety of tasks requiring continuous surveillance of a dynamic area, examples of which are environmental monitoring, and search and rescue missions. Motivated by these applications, in this paper we consider the multi-robot persistent coverage control problem over a grid environment. The goal is to ensure a desired lower bound on the coverage level of each cell in the grid, that is decreasing at a given rate for unoccupied cells. We consider a finite set of candidate poses for the agents and introduce a directed graph with nodes representing their admissible poses. We formulate a persistent coverage control problem as a MILP problem that aims to maximize the coverage level of the cells over a finite horizon. To solve the problem, we design a receding horizon scheme (RHS) and prove its recursive feasibility property by introducing a set of time-varying terminal constraints to the problem. These terminal constraints ensure that the agents are always able to terminate their plans in pre-determined closed trajectories. A two-step method is proposed for the construction of the closed trajectories, guaranteeing the satisfaction of the coverage level lower bound constraint, when the resulting closed trajectories are followed repeatedly. Due to the special structure of the problem, agents are able to visit every cell in the grid repeatedly within a worst-case visitation period. Finally, we provide a computational time analysis of the problem for different simulated scenarios and demonstrate the performance of the RHS problem by an illustrative example.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Team Tamas Keviczk

    Probabilistic energy management for building climate comfort in smart thermal grids with seasonal storage systems

    No full text
    This paper presents an energy management framework for building climate comfort (BCC) systems interconnected in a grid via aquifer thermal energy storage (ATES) systems in the presence of two types of uncertainty (private and common). ATES can be used either as a heat source (hot well) or sink (cold well) depending on the season. We consider the uncertain thermal energy demand of individual buildings as private uncertainty source and the uncertain common resource pool (ATES) between neighbors as common uncertainty source. We develop a large-scale stochastic hybrid dynamical model to predict the thermal energy imbalance in a network of interconnected BCC systems together with mutual interactions between their local ATES. We formulate a finite-horizon mixed-integer quadratic optimization problem with multiple chance constraints at each sampling time, which is in general a non-convex problem and hard to solve. We then provide a computationally tractable framework by extending the so-called robust randomized approach and offering a less conservative solution for a problem with multiple chance constraints. A simulation study is provided to compare completely decoupled, centralized and move-blocking centralized solutions. We also present a numerical study using a geohydrological simulation environment (MODFLOW) to illustrate the advantages of our proposed framework.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Team Tamas Keviczk

    Cooperative R-passivity based control for mechanical systems

    No full text
    In this work we consider the problem of cooperative end-effector control between heterogeneous fully actuated agents when varying-time delays and/or packet loss are present. We couple agents via outputs encoded with task-space coordinates and velocities that are transformed into wave-variables to overcome the destabilising effects of the communication network. The scheme poses dynamic requirements on the agents which are locally satisfied with feedback control that integrates subtasks, such as joint-limit avoidance or local tracking, when there are redundant degrees-of-freedom. The proposed approach extends existing methods to task-space control. The approach is robust to network effects, applies to nonlinear systems and is scalable by design. The tuning task is simplified considerably by separation of the cooperative and non-cooperative control terms. We demonstrate the efficacy of the proposed approach experimentally.Learning & Autonomous ControlTeam Tamas Keviczk

    Distributed computational framework for large-scale stochastic convex optimization

    Get PDF
    This paper presents a distributed computational framework for stochastic convex optimization problems using the so-called scenario approach. Such a problem arises, for example, in a large-scale network of interconnected linear systems with local and common uncertainties. Due to the large number of required scenarios to approximate the stochasticity of these problems, the stochastic optimization involves formulating a large-scale scenario program, which is in general computationally demanding. We present two novel ideas in this paper to address this issue. We first develop a technique to decompose the large-scale scenario program into distributed scenario programs that exchange a certain number of scenarios with each other to compute local decisions using the alternating direction method of multipliers (ADMM). We show the exactness of the de-composition with a-priori probabilistic guarantees for the desired level of constraint fulfillment for both local and common uncertainty sources. As our second contribution, we develop a so-called soft communication scheme based on a set parametrization technique together with the notion of probabilistically reliable sets to reduce the required communication between the subproblems. We show how to incorporate the probabilistic reliability notion into existing results and provide new guarantees for the desired level of constraint violations. Two different simulation studies of two types of interconnected network, namely dynamically coupled and coupling constraints, are presented to illustrate advantages of the proposed distributed framework.Team Tamas Keviczk

    An improved primal-dual interior-point solver for model predictive control

    No full text
    We propose a primal-dual interior-point (PDIP) method for solving quadratic programming problems with linear inequality constraints that typically arise from MPC applications. We show that the solver converges (locally) quadratically to a suboptimal solution of the MPC problem. PDIP solvers rely on two phases: the damped and the pure Newton phases. Compared to state-of-the-art PDIP methods, our solver replaces the initial damped Newton phase (usually used to compute a medium-accuracy solution) with a dual solver based on Nesterov's fast gradient scheme (DFG) that converges with a sublinear convergence rate of order O(1/k2) to a medium-accuracy solution. The switching strategy to the pure Newton phase, compared to the state of the art, is computed in the dual space to exploit the dual information provided by the DFG in the first phase. Removing the damped Newton phase has the additional advantage that our solver saves the computational effort required by backtracking line search. The effectiveness of the proposed solver is demonstrated on a 2-dimensional discrete-time unstable system and on an aerospace applicationTeam Tamas Keviczk
    corecore