114 research outputs found
The Role of Transcriptional Regulation in Hybrid Vigor
The genetic basis of hybrid vigor in plants remains largely unsolved but strong evidence suggests that variation in transcriptional regulation can explain many aspects of this phenomenon. Natural variation in transcriptional regulation is highly abundant in virtually all species and thus a potential source of heterotic variability. Allele Specific Expression (ASE), which is tightly linked to parent of origin effects and modulated by complex interactions in cis and in trans, is generally considered to play a key role in explaining the differences between hybrids and parental lines. Here we discuss the recent developments in elucidating the role of transcriptional variation in a number of aspects of hybrid vigor, thereby bridging old paradigms and hypotheses with contemporary research in various species.</p
The genetic framework of shoot regeneration in Arabidopsis comprises master regulators and conditional fine-tuning factors
Clonal propagation and genetic engineering of plants requires regeneration, but many species are recalcitrant and there is large variability in explant responses. Here, we perform a genome-wide association study using 190 natural Arabidopsis accessions to dissect the genetics of shoot regeneration from root explants and several related in vitro traits. Strong variation is found in the recorded phenotypes and association mapping pinpoints a myriad of quantitative trait genes, including prior candidates and potential novel regeneration determinants. As most of these genes are trait- and protocol-specific, we propose a model wherein shoot regeneration is governed by many conditional fine-tuning factors and a few universal master regulators such as WUSCHEL, whose transcript levels correlate with natural variation in regenerated shoot numbers. Potentially novel genes in this last category are AT3G09925, SUP, EDA40 and DOF4.4. We urge future research in the field to consider multiple conditions and genetic backgrounds
Integrative analyses of genetic variation in enzyme activities of primary carbohydrate metabolism reveal distinct modes of regulation in Arabidopsis thaliana
Multiparallel QTL analysis of 15 Arabidopsis primary carbohydrate metabolism enzymes reveals that traits affecting primary metabolism are often correlated
Meiotic crossover reduction by virus-induced gene silencing enables the efficient generation of chromosome substitution lines and reverse breeding in Arabidopsis thaliana.
Plant breeding applications exploiting meiotic mutant phenotypes (like the increase or decrease of crossover (CO) recombination) have been proposed over the last years. As recessive meiotic mutations in breeding lines may affect fertility or have other pleiotropic effects, transient silencing techniques may be preferred. Reverse breeding is a breeding technique that would benefit from the transient downregulation of CO formation. The technique is essentially the opposite of plant hybridization: a method to extract parental lines from a hybrid. The method can also be used to efficiently generate chromosome substitution lines (CSLs). For successful reverse breeding, the two homologous chromosome sets of a heterozygous plant must be divided over two haploid complements, which can be achieved by the suppression of meiotic CO recombination and the subsequent production of doubled haploid plants. Here we show the feasibility of transiently reducing CO formation using virus-induced gene silencing (VIGS) by targeting the meiotic gene MSH5 in a wild-type heterozygote of Arabidopsis thaliana. The application of VIGS (rather than using lengthy stable transformation) generates transgene-free offspring with the desired genetic composition: we obtained parental lines from a wild-type heterozygous F1 in two generations. In addition, we obtained 20 (of the 32 possible) CSLs in one experiment. Our results demonstrate that meiosis can be modulated at will in A. thaliana to generate CSLs and parental lines rapidly for hybrid breeding. Furthermore, we illustrate how the modification of meiosis using VIGS can open routes to develop efficient plant breeding strategies
Mapping the Arabidopsis Metabolic Landscape by Untargeted Metabolomics at Different Environmental Conditions
Metabolic genome-wide association studies (mGWAS), whereupon metabolite levels are regarded as traits, can help unravel the genetic basis of metabolic networks. A total of 309 Arabidopsis accessions were grown under two independent environmental conditions (control and stress) and subjected to untargeted LC-MS-based metabolomic profiling; levels of the obtained hydrophilic metabolites were used in GWAS. Our two-condition-based GWAS for more than 3000 semi-polar metabolites resulted in the detection of 123 highly resolved metabolite quantitative trait loci (p ≤ 1.0E-08), 24.39% of which were environment-specific. Interestingly, differently from natural variation in Arabidopsis primary metabolites, which tends to be controlled by a large number of small-effect loci, we found several major large-effect loci alongside a vast number of small-effect loci controlling variation of secondary metabolites. The two-condition-based GWAS was followed by integration with network-derived metabolite-transcript correlations using a time-course stress experiment. Through this integrative approach, we selected 70 key candidate associations between structural genes and metabolites, and experimentally validated eight novel associations, two of them showing differential genetic regulation in the two environments studied. We demonstrate the power of combining large-scale untargeted metabolomics-based GWAS with time-course-derived networks both performed under different abiotic environments for identifying metabolite-gene associations, providing novel global insights into the metabolic landscape of Arabidopsis. By combining large-scale untargeted metabolomics-based GWAS and network analysis with environmental stress-driven perturbations of metabolic homeostasis, this system-wide study provides new global insights into the metabolic landscape of Arabidopsis, using a strategy that could readily be extended to other plant species.</p
Epigenetic mapping of the metabolome reveals mediators of the epigenotype-phenotype map
Identifying the sources of natural variation underlying metabolic differences between plants will enable a better understanding of plant metabolism and provide insights into the regulatory networks that govern plant growth and morphology. So far, however, the contribution of epigenetic variation to metabolic diversity has been largely ignored. In the present study, we utilized a panel of Arabidopsis thaliana epigenetic recombinant inbred lines (epiRILs) to assess the impact of epigenetic variation on the metabolic composition. Thirty epigenetic QTL (QTLepi) were detected, which partly overlap with QTLepi linked to growth and morphology. In an effort to identify causal candidate genes in the QTLepi regions and their putative trans-targets, we performed in silico small RNA and qPCR analyses. Differentially expressed genes were further studied by phenotypic and metabolic analyses of knockout mutants. Three genes were detected that recapitulated the detected QTLepi effects, providing evidence for epigenetic regulation in cis and in trans These results indicate that epigenetic mechanisms impact metabolic diversity, possibly via small RNAs, and thus aid in further disentangling the complex epigenotype-phenotype map
A genome-wide library of CB4856/N2 introgression lines of Caenorhabditis elegans
Recombinant inbred lines (RILs) derived from Caenorhabditis elegans wild-type N2 and CB4856 are increasingly being used for mapping genes underlying complex traits. To speed up mapping and gene discovery, introgression lines (ILs) offer a powerful tool for more efficient QTL identification. We constructed a library of 90 ILs, each carrying a single homozygous CB4856 genomic segment introgressed into the genetic background of N2. The ILs were genotyped by 123 single-nucleotide polymorphism (SNP) markers. The proportion of the CB4856 segments in most lines does not exceed 3%, and together the introgressions cover 96% of the CB4856 genome. The value of the IL library was demonstrated by identifying novel loci underlying natural variation in two ageing-related traits, i.e. lifespan and pharyngeal pumping rate. Bin mapping of lifespan resulted in six QTLs, which all have a lifespan-shortening effect on the CB4856 allele. We found five QTLs for the decrease in pumping rate, of which four colocated with QTLs found for average lifespan. This suggests pleiotropic or closely linked QTL associated with lifespan and pumping rate. Overall, the presented IL library provides a versatile resource toward easier and efficient fine mapping and functional analyses of loci and genes underlying complex traits in C. elegans
- …