676 research outputs found

    Adaptive and Supertwisting Adaptive Spacecraft Orbit Control Around Asteroids

    Full text link
    This paper addresses the development of control systems for the orbit control of spacecraft around irregularly shaped rotating asteroids with uncertain parameters. The objective is to steer the spacecraft along prescribed orbits. First, a nonlinear adaptive law for orbit control was designed. This was followed by the design of a supertwisting adaptive (STWA) control system. In the closed-loop system, which includes the adaptive law or the STWA law, all the signals remain bounded, and the trajectory tracking error asymptotically converges to zero for any initial condition. Finally, under the assumption of boundedness of the derivative of the uncertain functions of the model in a region of the state space, a supertwisting control (STW) law for finite-time convergence of the trajectory was obtained. Based on the Lyapunov theory, stability properties of the closed-loop systems were analyzed. Simulation results for 433 Eros and Ida asteroids were presented for illustration. The results showed that control of spacecraft along closed orbits or to a fixed point is accomplished using each of these controllers, despite uncertainties in the parameters of the asteroid models

    Non-Certainty-Equivalent Adaptive Control of a Nonlinear Aeroelastic System

    Full text link
    The development of a non-certainty-equivalent adaptive control system for the control of a nonlinear aeroelastic system is the subject of this paper. The prototypical aeroelastic wing section considered here includes structural nonlinearity and a single control surface for the purpose of control. Its dynamical model has two-degree-of-freedom and describes the plunge and pitch motion. It is assumed that the model parameters (except the sign of one of the control input coefficients) are not known. The uncontrolled aeroelastic model exhibits limit cycle oscillation beyond a critical free-stream velocity. Based on the attractive manifold, and the immersion and invariance methodologies, a non-certainty-equivalent adaptive state variable feedback control law for the trajectory tracking of the pitch angle is derived. Using the Lyapunov analysis, asymptotic convergence of the state variables to the origin is established. It is shown that the trajectory of the system converges to a manifold. The special feature of the designed control system is that the closed-loop system asymptotically recovers the performance of a deterministic controller. This cannot happen if certainty-equivalent adaptive controllers are used. Simulation results are presented which show that the control system suppresses the oscillatory responses of the system in the presence of large parameter uncertainties

    Study of pure annihilation type decays BDsKB \to D_s^{*} K

    Full text link
    In this work, we calculate the rare decays B0DsK+B^0 \to D_s^{*-} K^+ and B+Ds+Kˉ0B^+ \to D_s^{*+} \bar{K}^0 in perturbative QCD approach with Sudakov resummation. We give the branching ratio of 10510^{-5} for B0DsK+B^0 \to D_s^{*-}K^+, which will be tested soon in BB factories. The decay B+Ds+Kˉ0B^+ \to D_s^{*+} \bar{K}^0 has a very small branching ratio at O(108){\cal O}(10^{-8}), due to the suppression from CKM matrix elements VubVcd|V_{ub}^* V_{cd}|. It may be sensitive to new physics contributions.Comment: 14 pages, 1 figur

    kTk_T factorization of exclusive processes

    Get PDF
    We prove kTk_T factorization theorem in perturbative QCD (PQCD) for exclusive processes by considering πγγ(π)\pi\gamma^*\to \gamma(\pi) and Bγ(π)lνˉB\to\gamma(\pi) l\bar\nu. The relevant form factors are expressed as the convolution of hard amplitudes with two-parton meson wave functions in the impact parameter bb space, bb being conjugate to the parton transverse momenta kTk_T. The point is that on-shell valence partons carry longitudinal momenta initially, and acquire kTk_T through collinear gluon exchanges. The bb-dependent two-parton wave functions with an appropriate path for the Wilson links are gauge-invariant. The hard amplitudes, defined as the difference between the parton-level diagrams of on-shell external particles and their collinear approximation, are also gauge-invariant. We compare the predictions for two-body nonleptonic BB meson decays derived from kTk_T factorization (the PQCD approach) and from collinear factorization (the QCD factorization approach).Comment: 11 pages, REVTEX, 5 figure

    Perturbative QCD analysis of BϕKB \to \phi K^* decays

    Full text link
    We study the first observed charmless BVVB\to VV modes, the BϕKB\to\phi K^* decays, in perturbative QCD formalism. The obtained branching ratios B(BϕK)15×106B(B\to\phi K^*)\sim 15 \times 10^{-6} are larger than 9×106\sim 9\times 10^{-6} from QCD factorization. The comparison of the predicted magnitudes and phases of the different helicity amplitudes, and branching ratios with experimental data can test the power counting rules, the evaluation of annihilation contributions, and the mechanism of dynamical penguin enhancement in perturbative QCD, respectively.Comment: 14 pages, 2 tables, brief disscussion on hard sacle added, version to appear in PR

    Threshold resummation for exclusive B meson decays

    Full text link
    We argue that double logarithmic corrections αsln2x\alpha_s\ln^2 x need to be resumed in perturbative QCD factorization theorem for exclusive BB meson decays, when the end-point region with a momentum fraction x0x\to 0 is important. These double logarithms, being of the collinear origin, are absorbed into a quark jet function, which is defined by a matrix element of a quark field attached by a Wilson line. The factorization of the jet function from the decay BγlνˉB\to\gamma l\bar\nu is proved to all orders. Threshold resummation for the jet function leads to a universal, {\it i.e.}, process-independent, Sudakov factor, whose qualitative behavior is analyzed and found to smear the end-point singularities in heavy-to-light transition form factors.Comment: 10 pages, more details are include
    corecore