12 research outputs found

    Utilization of Nongkhai Black Jasmine Rice Bran Oils for Development of Functional Drink Emulsion

    Get PDF
    Rice bran is a nutritious by-product from rice milling process. It is usually used as animal feed otherwise rejected as waste that could raise environmental issues. This research aims at utilizing oil extracted from Nongkhai black jasmine rice bran to develop an oil-in-water emulsion drink. Oil was extracted from Nongkhai black jasmine rice bran using hexane as a solvent by Soxhlet extraction method. Nongkhai black jasmine rice bran gave an oil yield of 12.38%. The extracted oil contained total phenolic 120.03 Âą 1.26 g GAE/g oil, flavonoid 46.90 Âą 0.69 g QE/g oil and a-oryzanol 236.73 Âą 7.54 g/g oil. The antioxidant activity of the oil tested by DPPH, ABTS, and FRAP were 1676.63 Âą 76.86, 592.75 Âą 46.22, 1.31 Âą 0.22 g Trolox equivalent/g oil, respectively. An oil-in-water emulsion beverage was then developed by dispersing 1% (w/w) of Nongkhai black jasmine rice bran oil with 0.1% (w/w) of Tween80/Span80 (1:1 w/w) as emulsifiers in water. The sweetness of the emulsion beverage was adjusted by adding erythritol mixed with stevia extract sweetener at 0.1, 0.2, 0.3, and 0.4 % (w/v). After pasteurization, all emulsion beverages were subjected to Just-about-right and 9-point hedonic sensory tests using a randomized complete block design. The emulsion containing 0.4 % sweetener had the highest overall liking score of 7.0 Âą 1.1, representing moderate liking. The emulsion beverage contained -oryzanol 13.3 Âą 0.3 g/mL with the antioxidant activity tested by ABTS of 267.0 Âą 37.7 g Trolox equivalent/mL. In conclusion, Nongkhai black jasmine rice bran is a source of bioactive lipids that can be utilized as an ingredient in a plant-based functional drink emulsion

    Utilization of Nongkhai Black Jasmine Rice Bran Oils for Development of Functional Drink Emulsion

    No full text
    Rice bran is a nutritious by-product from rice milling process. It is usually used as animal feed otherwise rejected as waste that could raise environmental issues. This research aims at utilizing oil extracted from Nongkhai black jasmine rice bran to develop an oil-in-water emulsion drink. Oil was extracted from Nongkhai black jasmine rice bran using hexane as a solvent by Soxhlet extraction method. Nongkhai black jasmine rice bran gave an oil yield of 12.38%. The extracted oil contained total phenolic 120.03 Âą 1.26 g GAE/g oil, flavonoid 46.90 Âą 0.69 g QE/g oil and a-oryzanol 236.73 Âą 7.54 g/g oil. The antioxidant activity of the oil tested by DPPH, ABTS, and FRAP were 1676.63 Âą 76.86, 592.75 Âą 46.22, 1.31 Âą 0.22 g Trolox equivalent/g oil, respectively. An oil-in-water emulsion beverage was then developed by dispersing 1% (w/w) of Nongkhai black jasmine rice bran oil with 0.1% (w/w) of Tween80/Span80 (1:1 w/w) as emulsifiers in water. The sweetness of the emulsion beverage was adjusted by adding erythritol mixed with stevia extract sweetener at 0.1, 0.2, 0.3, and 0.4 % (w/v). After pasteurization, all emulsion beverages were subjected to Just-about-right and 9-point hedonic sensory tests using a randomized complete block design. The emulsion containing 0.4 % sweetener had the highest overall liking score of 7.0 Âą 1.1, representing moderate liking. The emulsion beverage contained -oryzanol 13.3 Âą 0.3 g/mL with the antioxidant activity tested by ABTS of 267.0 Âą 37.7 g Trolox equivalent/mL. In conclusion, Nongkhai black jasmine rice bran is a source of bioactive lipids that can be utilized as an ingredient in a plant-based functional drink emulsion

    Antioxidant Activity and Alpha-glucosidase Inhibitory Activity of Traditional Herbal Extracts in the Blood and Body Nourishing Group from upper Northern Regions of Thailand

    Get PDF
    āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āļĻāļķāļāļĐāļēāļŠāļēāļĢāļžāļĪāļāļĐāđ€āļ„āļĄāļĩāđ€āļšāļ·āđ‰āļ­āļ‡āļ•āđ‰āļ™ āļ›āļĢāļīāļĄāļēāļ“āļŸāļĩāļ™āļ­āļĨāļīāļāļĢāļ§āļĄ āļĪāļ—āļ˜āļīāđŒāļāļēāļĢāļ•āđ‰āļēāļ™āļ­āļ™āļļāļĄāļđāļĨāļ­āļīāļŠāļĢāļ° āđāļĨāļ°āļĪāļ—āļ˜āļīāđŒāļāļēāļĢāļĒāļąāļšāļĒāļąāđ‰āļ‡āđ€āļ­āļ™āđ„āļ‹āļĄāđŒāđāļ­āļĨāļŸāļēāļāļĨāļđāđ‚āļ„āļ‹āļīāđ€āļ”āļŠāļ‚āļ­āļ‡āļŠāļēāļĢāļŠāļāļąāļ”āļŠāļĄāļļāļ™āđ„āļžāļĢāļ•āļēāļĄāļ āļđāļĄāļīāļ›āļąāļāļāļēāļ—āđ‰āļ­āļ‡āļ–āļīāđˆāļ™āļāļĨāļļāđˆāļĄāļšāļģāļĢāļļāļ‡āđ€āļĨāļ·āļ­āļ”āđāļĨāļ°āļšāļģāļĢāļļāļ‡āļĢāđˆāļēāļ‡āļāļēāļĒāļˆāļģāļ™āļ§āļ™ 10 āļŠāļ™āļīāļ”āđƒāļ™āđ€āļ‚āļ•āļ āļēāļ„āļ•āļ°āļ§āļąāļ™āļ­āļ­āļāđ€āļ‰āļĩāļĒāļ‡āđ€āļŦāļ™āļ·āļ­āļ•āļ­āļ™āļšāļ™ āđ„āļ”āđ‰āđāļāđˆ āđāļ‹āđˆāļĄāđ‰āļēāļ—āļ°āļĨāļēāļĒ (Erycibe paniculata Roxb) āļĄāđˆāļ§āļĒāđ€āļĨāļ·āļ­āļ” (Gnetum macrostachyum. Hook. f.) āļŠāļēāļĄāļŠāļīāļšāļŠāļ­āļ‡āļ›āļĢāļ°āļ”āļ‡ (Bauhinia sirindhorniae K. Larsen & S. S. Larsen) āļāļģāļĨāļąāļ‡āđ€āļĨāļ·āļ­āļ”āļĄāđ‰āļē (Knema angustifolia Roxb Warb.) āļĢāļēāļ‡āđāļ”āļ‡ (Ventilago denticulata Willd.) āđ€āļ­āļ™āļ­āđ‰āļē (Melastoma malabathricum L.) āļāļģāļĨāļąāļ‡āđ€āļŠāļ·āļ­āđ‚āļ„āļĢāđˆāļ‡ (Strychnos axillaris Colebr.) āļāļēāļ‡ (Caesalpinia sappan L.) āļŠāđ‰āļēāļ‡āļ™āđ‰āļēāļ§ (Ochna integerrima Lour Merr.) āđāļĨāļ°āļŦāļīāļ™āļĢāļ°āđ€āļšāļīāļ” (Osyris sp.) āļœāļĨāļāļēāļĢāļ—āļ”āļŠāļ­āļšāļŠāļēāļĢāļžāļĪāļāļĐāđ€āļ„āļĄāļĩāđ€āļšāļ·āđ‰āļ­āļ‡āļ•āđ‰āļ™āļˆāļēāļāļŠāļēāļĢāļŠāļāļąāļ”āļŦāļĒāļēāļšāđ€āļ­āļ—āļēāļ™āļ­āļĨāļ‚āļ­āļ‡āļŠāļĄāļļāļ™āđ„āļžāļĢāļžāļšāļ§āđˆāļē āļŠāļĄāļļāļ™āđ„āļžāļĢāļŠāđˆāļ§āļ™āđƒāļŦāļāđˆāļˆāļ°āļĄāļĩāļŠāļēāļĢāļžāļĪāļāļĐāđ€āļ„āļĄāļĩāļāļĨāļļāđˆāļĄāļŸāļĨāļēāđ‚āļ§āļ™āļ­āļĒāļ”āđŒāđāļĨāļ°āđ€āļ—āļ­āļĢāđŒāļžāļĩāļ™āļ­āļĒāļ”āđŒ āđāļĨāļ°āļžāļšāļāļĨāļļāđˆāļĄāļ­āļąāļĨāļ„āļēāļĨāļ­āļĒāļ”āđŒ āđāļ­āļ™āļ—āļĢāļēāļ„āļ§āļīāđ‚āļ™āļ™ āļ„āļđāļĄāļēāļĢāļīāļ™ āļ‹āļēāđ‚āļ›āļ™āļīāļ™ āđāļĨāļ°āđāļ—āļ™āļ™āļīāļ™āđƒāļ™āļŠāļĄāļļāļ™āđ„āļžāļĢāđ€āļžāļĩāļĒāļ‡āđ„āļĄāđˆāļāļĩāđˆāļŠāļ™āļīāļ” āđāļ•āđˆāđ„āļĄāđˆāļžāļšāļāļĨāļļāđˆāļĄāļŠāđ€āļ•āļ­āļĢāļ­āļĒāļ”āđŒāđāļĨāļ°āļ„āļēāļĢāđŒāļ”āļīāđāļ­āļ„āđ„āļāļĨāđ‚āļ„āđ„āļ‹āļ”āđŒ āđ€āļĄāļ·āđˆāļ­āļ™āļģāļŠāļēāļĢāļŠāļāļąāļ”āđ€āļ­āļ—āļēāļ™āļ­āļĨāļ‚āļ­āļ‡āļĨāļģāļ•āđ‰āļ™āļĢāļēāļ‡āđāļ”āļ‡ āļŠāļēāļĄāļŠāļīāļšāļŠāļ­āļ‡āļ›āļĢāļ°āļ”āļ‡ āļāļēāļ‡ āđāļĨāļ°āļŦāļīāļ™āļĢāļ°āđ€āļšāļīāļ” āļĄāļēāļ—āļ”āļŠāļ­āļšāļĪāļ—āļ˜āļīāđŒāļāļēāļĢāļ•āđ‰āļēāļ™āļ­āļ™āļļāļĄāļđāļĨāļ­āļīāļŠāļĢāļ°āļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāļ”āļĩāļžāļĩāļžāļĩāđ€āļ­āļŠāļžāļšāļ§āđˆāļē āļĄāļĩāļ„āđˆāļēāļŠāļđāļ‡āđƒāļ™āļŠāđˆāļ§āļ‡ 147.03 Âą 2.72, 127.30 Âą 0.99, 104.94 Âą 3.84 āđāļĨāļ° 73.72 Âą 1.46 āļĄāļīāļĨāļĨāļīāļāļĢāļąāļĄāļŠāļĄāļĄāļđāļĨāļ‚āļ­āļ‡āļāļĢāļ”āđāļ­āļŠāļ„āļ­āļĢāđŒāļšāļīāļāļ•āđˆāļ­āļāļĢāļąāļĄāļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡ āļ•āļēāļĄāļĨāļģāļ”āļąāļš āļ‹āļķāđˆāļ‡āļŠāļ­āļ”āļ„āļĨāđ‰āļ­āļ‡āļāļąāļšāļ›āļĢāļīāļĄāļēāļ“āļŸāļĩāļ™āļ­āļĨāļīāļāļĢāļ§āļĄāļ‹āļķāđˆāļ‡āļ•āļĢāļ§āļˆāļžāļšāđƒāļ™āļ›āļĢāļīāļĄāļēāļ“āļ—āļĩāđˆāļŠāļđāļ‡āđ€āļŠāđˆāļ™āļāļąāļ™ āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āļŠāļēāļĢāļŠāļāļąāļ”āļŦāļĒāļēāļšāđ€āļ­āļ—āļēāļ™āļ­āļĨāļ‚āļ­āļ‡āļŠāļĄāļļāļ™āđ„āļžāļĢāļˆāļģāļ™āļ§āļ™ 9 āļŠāļ™āļīāļ” (āļĒāļāđ€āļ§āđ‰āļ™āđāļ‹āđˆāļĄāđ‰āļēāļ—āļ°āļĨāļēāļĒ) āļĒāļąāļ‡āđāļŠāļ”āļ‡āļĪāļ—āļ˜āļīāđŒāļĒāļąāļšāļĒāļąāđ‰āļ‡āđ€āļ­āļ™āđ„āļ‹āļĄāđŒāđāļ­āļĨāļŸāļēāļāļĨāļđāđ‚āļ„āļ‹āļīāđ€āļ”āļŠāļ—āļĩāđˆāļ”āļĩāļāļ§āđˆāļēāļŠāļēāļĢāļĄāļēāļ•āļĢāļāļēāļ™āļ­āļ°āļ„āļēāļĢāđŒāđ‚āļšāļŠ āđ‚āļ”āļĒāļœāļĨāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āļ—āļĩāđˆāđ„āļ”āđ‰āļĄāļĩāļ„āđˆāļēāđāļ•āļāļ•āđˆāļēāļ‡āļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ™āļąāļĒāļŠāļģāļ„āļąāļ (p < 0.05) āļ”āļąāļ‡āļ™āļąāđ‰āļ™āļŠāļĄāļļāļ™āđ„āļžāļĢāļ•āļēāļĄāļ āļđāļĄāļīāļ›āļąāļāļāļēāļ—āđ‰āļ­āļ‡āļ–āļīāđˆāļ™āļāļĨāļļāđˆāļĄāļšāļģāļĢāļļāļ‡āđ€āļĨāļ·āļ­āļ”āđāļĨāļ°āļšāļģāļĢāļļāļ‡āļĢāđˆāļēāļ‡āļāļēāļĒāļˆāļķāļ‡āđ€āļ›āđ‡āļ™āđāļŦāļĨāđˆāļ‡āļ‚āļ­āļ‡āļŠāļēāļĢāļ•āđ‰āļēāļ™āļ­āļ™āļļāļĄāļđāļĨāļ­āļīāļŠāļĢāļ°āļ—āļĩāđˆāļ”āļĩ āđāļĨāļ°āļŠāļēāļĄāļēāļĢāļ–āļžāļąāļ’āļ™āļēāđ€āļ›āđ‡āļ™āļ­āļēāļŦāļēāļĢāļŦāļĢāļ·āļ­āļĒāļēāļ—āļĩāđˆāļŠāļēāļĄāļēāļĢāļ–āļ›āđ‰āļ­āļ‡āļāļąāļ™āđ‚āļĢāļ„āđ€āļšāļēāļŦāļ§āļēāļ™āđ„āļ”āđ‰āļ•āđˆāļ­āđ„āļ›This research aims to study phytochemicals, total phenolic content, antioxidant activity and alphaglucosidase inhibitory activity of 10 traditional herbal crude extracts. The medicinal herbs that nourish blood and body from the upper Northeastern of Thailand used in this study included Erycibe paniculata Roxb., Gnetum macrostachyum. Hook. f., Bauhinia sirindhorniae K. Larsen & S. S. Larsen, Knema angustifolia Roxb Warb., Ventilago denticulata Willd., Melastoma malabathricum L., Strychnos axillaris Colebr., Caesalpinia sappan L., Ochna integerrima Lour Merr., and Osyris sp. The results showed that most of the ethanolic herbs extracts contained flavonoids and terpenes. In addition, alkaloids, anthraquinone, coumarin, saponin and tannin were found in some extracts. However, there was no steroids and cardiac glycoside found in the extracts. The extracts of Ventilago denticulata Willd., Bauhinia sirindhorniae K. Larsen & S. S. Larsen, Caesalpinia sappan L., and Osyris sp. showed relatively high antioxidant activity determined by DPPH assay with the value of 147.03 Âą 2.72, 127.30 Âą 0.99, 104.94 Âą 3.84 and 73.72 Âą1.46 mg AE/g crude extract, respectively. This is related to the high content of total phenolic compounds in these extracts. Interestingly, all the extracts, except the extract of Erycibe paniculata Roxb., had significantly (p < 0.05) higher alpha-glucosidase inhibitory activity than acarbose. Thus, the traditional blood and body nourishing herbs are good sources of antioxidants and could be further developed to foods or drugs for diabetes prevention

    In Vitro Rumen Fermentation of Coconut, Sugar Palm, and Durian Peel Silages, Prepared with Selected Additives

    No full text
    Understanding the nutritive values of fruit peel residues could expand our feed atlas in sustaining livestock production systems. This study aimed to investigate the effects of lactic acid bacteria (LAB), cellulase enzyme, molasses, and their combinations on the fermentation quality and in vitro digestibility of coconut peel (CCP), sugar palm peel (SPP), and durian peel (DRP) silage. The CCP, SPP, and DRP were ensiled in a small-scale silo without additive (control), and with LAB strain TH14 (TH14), molasses, or Acremonium cellulase (AC) using a small-scale silage preparation technique according to a completely randomized design. All fresh peels had sufficient factors for ensiling such as moisture content (78–83%), water-soluble carbohydrates (WSC, 4.20–4.61% dry matter (DM)), and epiphytic LAB population (104–105 colony-forming units (cfu)/g fresh matter (FM)). However, aerobic bacteria counts were high (107–109 cfu/g FM). The fiber content of these fruit peels was high, with lignin abundances ranging from 9.1–21.8% DM and crude protein was low (2.7–5.4% DM). After ensiling, the pH values of the silage were optimal (â‰Ī4.25) and lower (p < 0.01) for SPP silage. The addition of molasses+TH14, molasses+AC, and molasses+TH14+AC has the potential to enhance fermentation characteristics and improve chemical composition. Silages treated with molasses alone improved the in vitro digestibility of tropical fruit peels. The residue of tropical fruits has the potential to be used as an alternative feed source for ruminants. Adding molasses, TH14, and AC during silage preparation could improve its nutritive value and digestibility
    corecore