9 research outputs found

    Controlling Factors and Forming Types of Deep Shale Gas Enrichment in Sichuan Basin, China

    No full text
    In order to find out the enrichment mechanism and forming type of deep shale gas, taking the Longmaxi Formation shale in the Desheng–Yunjin Syncline area of Sichuan Basin as an example, we determined the mineralogy, organic geochemistry, physical property analysis, gas and water content, and the influence of three factors, namely sedimentation, structural conditions, and hydrogeological conditions, on the enrichment of shale gas. The results show that Longmaxi Formation shale in Desheng–Yunjin Syncline area is a good hydrocarbon source rock that is in the over-mature stage and has the characteristics of high porosity, low permeability, and high-water saturation. The contents of clay and quartz are high, and the brittleness index is quite different. According to the mineral composition, nine types of lithofacies can be found. The development characteristics of Longmaxi Formation shale and the sealing property of the roof have no obvious influence on the enrichment of shale gas, but the tectonic activities and hydrodynamic conditions have obvious influence on the enrichment of shale gas. The main control factors for shale gas enrichment in different regions are different. According to the main control factors, the gas accumulation in the study area can be divided into three types: fault-controlled gas, anticline-controlled gas, and hydrodynamic-controlled gas. The fault-controlled gas type is distributed in the north of the Desheng syncline and the north of the Yunjin syncline, the anticline-controlled gas type is distributed in the south of the Desheng syncline and the south of the Yunjin syncline, and the hydrodynamic-controlled gas type is distributed in the middle of the Baozang syncline. This result is of great significance for deep shale gas exploration

    Controlling Factors and Forming Types of Deep Shale Gas Enrichment in Sichuan Basin, China

    No full text
    In order to find out the enrichment mechanism and forming type of deep shale gas, taking the Longmaxi Formation shale in the Desheng–Yunjin Syncline area of Sichuan Basin as an example, we determined the mineralogy, organic geochemistry, physical property analysis, gas and water content, and the influence of three factors, namely sedimentation, structural conditions, and hydrogeological conditions, on the enrichment of shale gas. The results show that Longmaxi Formation shale in Desheng–Yunjin Syncline area is a good hydrocarbon source rock that is in the over-mature stage and has the characteristics of high porosity, low permeability, and high-water saturation. The contents of clay and quartz are high, and the brittleness index is quite different. According to the mineral composition, nine types of lithofacies can be found. The development characteristics of Longmaxi Formation shale and the sealing property of the roof have no obvious influence on the enrichment of shale gas, but the tectonic activities and hydrodynamic conditions have obvious influence on the enrichment of shale gas. The main control factors for shale gas enrichment in different regions are different. According to the main control factors, the gas accumulation in the study area can be divided into three types: fault-controlled gas, anticline-controlled gas, and hydrodynamic-controlled gas. The fault-controlled gas type is distributed in the north of the Desheng syncline and the north of the Yunjin syncline, the anticline-controlled gas type is distributed in the south of the Desheng syncline and the south of the Yunjin syncline, and the hydrodynamic-controlled gas type is distributed in the middle of the Baozang syncline. This result is of great significance for deep shale gas exploration

    Pore Water and Its Influences on the Nanopore Structures of Deep Longmaxi Shales in the Luzhou Block of the Southern Sichuan Basin, China

    No full text
    In the Luzhou Block of the southern Sichuan Basin, the deep Longmaxi shales have become important exploration targets in recent years. However, the water-bearing properties of these shales are still unclear, which significantly limits evaluations of reservoir pore structures and gas-in-place (GIP) contents. In this study, twelve fresh shale core samples were collected at the well site, and the pore water (CPW) and equilibrium water (CEW) contents, as well as the pore structures of the shales, were analyzed under both as-received and dried conditions. The results indicate that the deep shales have low water-bearing extents with a pore water content (CPW) of 3.82–16.67 mg/g, and that both the organic matter (OM) and inorganic matter (IM) pores can be used for pore water storage. The extent of influence of pore water on nonmicropores and IM pore structures is more significant than that on micropores and OM pore structures. Meanwhile, the pore water obviously reduces the retention effects of nanopores and may block nanopores with pore widths < 0.5 nm. An average of 40% of pore spaces were taken up by pore water in the studied deep shales in the Luzhou Block, and the residual pore surface area and pore volume of the shales were mainly contributed from micropores and nonmicropores, respectively

    Mineral Composition of Prospective Section of Wufeng-Longmaxi Shale in Luzhou Shale Play, Sichuan Basin

    No full text
    Currently, Luzhou in the Sichuan Basin is a focal point for shale-gas exploration and development in China. However, a lack of detailed research on the mineral composition of the Wufeng Formation-Longmaxi Formation (WF-LF) shale is hindering the extraction of deep-buried shale gas in the Luzhou shale play. Herein, a field emission scanning electron microscope (FESEM) equipped with the Advanced Mineral Identification and Characterization System (AMICS) software was employed to analyze the mineral composition of the WF-LF shale from six wells in Luzhou. Quartz was the dominant mineral type, (16.9–87.21%, average 51.33%), followed by illite, calcite, dolomite, and pyrite. Our study revealed that (1) quartz content showed a moderate positive correlation with the total organic carbon (TOC) content, indicating that the quartz found in the shale is mostly of biological origin; and (2) the sum content of siliceous minerals and carbonaceous minerals was moderately positively correlated with the brittleness index (BRIT) in well SS1H2-7 and in the well group of RS8 and RS5, indicating that the siliceous minerals and carbonaceous minerals had an active effect on reservoir compressibility. Finally, according to the mineralogical features of each sublayer, we identified four types of reservoirs to determine their scope for exploration

    Differences of Main Enrichment Factors of S1l(1-1)(1) Sublayer Shale Gas in Southern Sichuan Basin

    No full text
    In this study, shale cores from 20 wells in the S1l(1-1)(1) sublayer of Longmaxi Formation buried in shallow shale (3500 m) in the southern Sichuan Basin, China were collected to compare their pore structures and gas-bearing properties using multiple experiments. Results showed that the deep layer has relatively lower brittle mineral content, which is disadvantageous in terms of the higher requirements it imposes on hydraulic fracturing. Results also showed that the most important factor controlling the differential enrichment of S1l(1-1)(1) shale gas in southern Sichuan Basin is porosity. Moreover, the porosity composition of shallow shale and deep shale has significant differences: the porosity of shallow shale is dominated by organic pores, while for deep shale, both organic and inorganic pores are important. The inorganic pores provide significant storage space for free gas in deep shale; their contribution warrants more attention. We also found that the difference in organic porosity of the shallow and deep shale samples resulted from large differences in pore development ability, while the highest inorganic porosity was concentrated near the optimal mineral composition when the content of quartz plus feldspar plus pyrite was about 70%. This study revealed the primary factor controlling the difference in gas content between shallow and deep shale and detailed the characteristics of microscopic pore structure, providing a basis for the exploration and development of deep shale gas in the Wufeng-Longmaxi Formation in the southern Sichuan Basin

    Thermal Maturity Constraint Effect and Development Model of Shale Pore Structure: A Case Study of Longmaxi Formation Shale in Southern Sichuan Basin, China

    No full text
    When the thermal maturity of the Longmaxi Formation in the southern Sichuan Basin is too high, the pore structure of shale becomes poor. Therefore, to investigate the effect of organic matter thermal maturity on shale pore structure, a study was conducted. Using the Longmaxi Formation shale in the southern Sichuan Basin as an example, the intrinsic relationship between shale porosity, pore structure parameters, organic matter laser Raman maturity, and organic matter graphitization degree was examined using X-ray photoelectron spectroscopy, particle helium porosity measurement, organic matter micro-laser Raman spectroscopy, and gas adsorption experiments. The results indicate that thermal maturity is the macroscopic manifestation of the graphitization degree of organic matter, and the correlation coefficient between the two is 0.85. A thermal maturity of 3.5% (with a corresponding organic matter graphitization degree of 17%) aligns with the highest values of shale porosity, pore volume, and pore-specific surface area across all pore size conditions. The evolution model of shale pore structure can be divided into two stages. The first stage is characterized by a thermal maturity between 2.0% and 3.5% (with a corresponding degree of graphitization of organic matter between 0% and 17%). During this stage, the number and connectivity of micro-macropores increase with increasing thermal maturity. The second stage is marked by a thermal maturity between 3.5% and 4.3% (with a corresponding degree of graphitization of organic matter between 17% and 47.32%). Basement faults are present, leading to abnormally high thermal maturity, poor preservation conditions, continuous generation of micropores, better connectivity, and a reduced number of pores. Medium macropores with good connectivity suffer from gas loss in the fracture network, leading to the collapse and disappearance of pores. The results mentioned in the statement have an important guiding role in the efficient exploration of shale gas in the Longmaxi Formation in the southern Sichuan Basin
    corecore