132 research outputs found

    Active acoustic cloaking in a convected flow field

    Full text link
    © 2019 Acoustical Society of America. Acoustic cloaking has mostly been considered within a stationary fluid. The authors herein show that accounting for the effects of convection in the presence of fluid flow is critical for cloaking in the acoustic domain. This work presents active acoustic cloaking in a convected flow field for two different incident fields, corresponding to a plane wave and a single monopole source, impinging on a rigid body. Monopole control sources circumferentially arranged around the rigid body are used to generate a secondary acoustic field to destructively interfere with the primary scattered field arising from the incident excitation cases. The authors show that for sound waves in a moving fluid, active cloaking can only be achieved using a convected cloak, which is dependent on Mach number

    Detecting sound waves generated by leaks in buried water distribution pipes

    Full text link
    It is common to use guided sound waves to detect leaks or cracks in pipelines. Applications include the nondestructive testing of oil and gas pipelines, which normally takes places at ultrasonic frequencies, as well as the detection of leaks and ruptures in water filled pipes at much lower audio frequencies. However, if the pipe is buried then sound leaks out of the pipe into the surrounding medium and this lowers the acoustic energy travelling along the pipe wall. This has the potential to limit the applications of this technology, and so it is necessary to develop knowledge of the acoustic properties of the guided waves in order to optimise detection techniques. Accordingly, this work examines the properties of sound waves propagating in an infinitely long fluid-filled buried pipe, with application to leak detection at low audio frequencies. A parametric study is undertaken to examine the sensitivity of sound propagation to the properties of the internal liquid, pipe walls and of the surrounding medium

    Numerical prediction of turbulent boundary layer noise from a sharp-edged flat plate

    Full text link
    © 2019 John Wiley & Sons, Ltd. An efficient hybrid uncorrelated wall plane waves–boundary element method (UWPW-BEM) technique is proposed to predict the flow-induced noise from a structure in low Mach number turbulent flow. Reynolds-averaged Navier-Stokes equations are used to estimate the turbulent boundary layer parameters such as convective velocity, boundary layer thickness, and wall shear stress over the surface of the structure. The spectrum of the wall pressure fluctuations is evaluated from the turbulent boundary layer parameters and by using semi-empirical models from literature. The wall pressure field underneath the turbulent boundary layer is synthesized by realizations of uncorrelated wall plane waves (UWPW). An acoustic BEM solver is then employed to compute the acoustic pressure scattered by the structure from the synthesized wall pressure field. Finally, the acoustic response of the structure in turbulent flow is obtained as an ensemble average of the acoustic pressures due to all realizations of uncorrelated plane waves. To demonstrate the hybrid UWPW-BEM approach, the self-noise generated by a flat plate in turbulent flow with Reynolds number based on chord Rec = 4.9 × 105 is predicted. The results are compared with those obtained from a large eddy simulation (LES)-BEM technique as well as with experimental data from literature

    Active acoustic cloaking of cylindrical shells in low Mach number flow

    Full text link
    The vibro-acoustic responses of a two-dimensional cylindrical shell in low Mach number flow are herein derived. The analytical model takes into account the structural elasticity and coupling of the shell vibration with its interior and exterior acoustic fields in the presence of a moving fluid. The cylindrical shell is modelled using Donnell-Mushtari theory. Taylor transformations are employed to transfer the convected wave equation into the ordinary wave equation which was then solved using scattering theory. Three excitation cases corresponding to a plane wave, an external monopole source and a radial point force applied directly to the shell are considered. Shell circumferential resonances and interior acoustic resonances are identified. Two active control strategies are then applied to acoustically cloak the cylindrical shell at its acoustic and structural resonances. The first control approach employs acoustic control sources in the exterior fluid domain. In the second approach, control forces are applied to directly excite the elastic shell, whereby the structural response is actively modified to manipulate the scattered and radiated acoustic fields arising from plane wave excitation of the shell. Results show that the second approach is superior in terms of both reduced control effort and cloaking of the global exterior domain. For both control approaches, the performance of the active cloak is shown to deteriorate if the convected flow field is not accounted for in the control process

    An integrated approach to fault diagnosis of machinery using wear debris and vibration analysis

    No full text
    Vibration and wear debris analyses are the two main condition monitoring techniques for machinery maintenance and fault diagnosis. In practice, these two techniques are usually conducted independently, and can only diagnose about 30–40% of faults when used separately. However, recent evidence shows that combining these two techniques provides greater and more reliable information, thereby resulting in a more effective maintenance program with large cost benefits to industry.\ud \ud In this paper, the correlation of vibration analysis and wear debris analysis was investigated. An experimental test rig consisting of a worm gearbox driven by an electric motor was set up to examine the correlation of the two techniques under various wear conditions. Three tests were conducted under the following conditions: (a) lack of proper lubrication, (b) normal operation, and (c) with the presence of contaminant particles added to the lubricating oil. Oil samples and vibration data were collected regularly. Wear debris analysis included the study of particle number and size distribution, the examination of particle morphology and types to determine possible wear mechanisms, and the analysis of chemical compositions to assess wear sources. Fault detection in the vibration signature was compared with the particle analysis. The results from this paper have given more understanding on the dependent and independent roles of vibration and wear debris analyses in machine condition monitoring and fault diagnosis

    A design strategy in the propulsion system attachment to a submarine hull to minimise radiated noise

    No full text
    Vibration modes of a submerged hull are excited by fluctuating forces generated at the propeller and transmitted to the hull via the propeller-shafting system. The low frequency hull vibrational modes result in significant sound radiation. This work investigates the reduction of the far-field radiated sound pressure by optimising the connection point of the shafting system to the hull. The submarine hull is modelled as a fluid loaded cylindrical hull with truncated conical shells at each end. The propeller-shafting system consists of the propeller, shaft, thrust bearing and foundation, and is modelled in a modular approach using a combination of spring-mass-damper elements and continuous systems (beams, plates, shells). The foundation is attached to the stern side end plate of the hull, which is modelled as a circular plate coupled to an annular plate. By tuning the connection radius of the foundation to the end plate, the maximum radiated noise in a given frequency range can be minimised

    Integration of wear debris and vibration analysis for machine condition monitoring

    No full text
    In this paper, the correlation of vibration analysis and wear debris analysis for machine condition monitoring is both qualitatively and quantitatively investigated. Various wear conditions were generated, using an experimental test rig consisting of a spur gearbox driven by an electric motor in order to examine the correlation of the two techniques. Two tests were conducted under the following two controlled operating conditions corresponding to constant normal load and constant overload. Oil samples and vibration data were collected regularly. Wear debris analysis included the study of particle number and size distribution, the examination of particle morphology and types to determine possible wear mechanisms, wear rates and wear sources. Fault detection in the vibration signature was compared with the particle analysis. The results from this paper have given more understanding on the dependent and independent roles of vibration and wear debris analyses in machine condition monitoring and fault diagnosis

    Active control of sound radiated by a submarine hull in axisymmetric vibration using inertial actuators

    No full text
    This paper investigates the use of inertial actuators to reduce the sound radiated by a submarine hull under excitation from the propeller. The axial forces from the propeller are tonal at the blade passing frequency. The hull is modeled as a fluid-loaded cylindrical shell with ring stiffeners and equally spaced bulkheads. The cylinder is closed at each end by circular plates and conical end caps. The forces from the propeller are transmitted to the hull by a rigid foundation connected to the propeller shaft. Inertial actuators are used as the structural control inputs. The actuators are arranged in circumferential arrays and attached to the internal end plates of the hull. Two active control techniques corresponding to active vibration control and discrete structural acoustic sensing are implemented to attenuate the structural and acoustic responses of the submarine. In the latter technique, error information on the radiated sound fields is provided by a discrete structural acoustic sensor. An acoustic transfer function is defined to estimate the far field sound pressure from a single point measurement on the hull. The inertial actuators are shown to provide control forces with a magnitude large enough to reduce the sound due to hull vibration. © 2012 American Society of Mechanical Engineers
    • …
    corecore