2 research outputs found

    SYNCHRONOUS FLUORESCENCE SPECTROSCOPY COUPLED WITH CONTINUOUS WAVELET TRANSFORMS AND SAVITZKY-GOLAY DERIVATIZATION TECHNIQUE FOR THE SIMULTANEOUS DETERMINATION OF TADALAFIL AND DAPOXETINE HCl.

    Get PDF
    Objective: A novel combination of Tadalafil (TAD) and Dapoxetine HCl (DAP) has been recently introduced into the market for the treatment of premature ejaculation. The aim of this work is the development and validation of simple, sensitive and accurate analytical methods for the determination of TAD and DAP in their binary mixture without prior separation.Methods: Synchronous fluorescence spectroscopic (SFS) methods coupled with continuous wavelet transforms (CWT) and Savitzky-Golay (SAVGOL) derivatization technique have been developed.Results: Under optimum conditions, TAD and DAP were determined in the concentration ranges of 0.01–3 µg/ml and 0.01–1.2 µg/ml, respectively.Conclusion: The developed methods have the requisite accuracy, selectivity, sensitivity and precision and were satisfactorily applied for the simultaneous determination of TAD and DAP in bulk powder and pharmaceutical preparations. The results obtained for the analysis of both drugs in their pure forms by the proposed methods were statistically compared to those obtained by applying a reported high performance liquid chromatographic method (HPLC) method. The statistical comparison showed that there is no significant difference between the proposed methods and the reported one with respect to accuracy and precision.Keywords: Synchronous fluorescence spectroscopy, Tadalafil, Dapoxetine HCl, Continuous wavelet transforms, Savitzky-Golay techniqu

    Stability-indicating HPLC and PLS chemometric methods for the determination of acemetacin in presence of its degradation products and impurities

    No full text
    Two stability-indicating methods were developed and validated for the quantitative determination of acemetacin (ACM) in presence of its degradation products and impurities. The first method was based on separation of ACM from its degradation products and impurities by RP-HPLC on Inertsil C8 column (150 × 4.6 mm i.d) using a mobile phase composed of 0.02 M phosphate buffer: methanol (35:65, v:v, pH = 6.5). The flow rate was adjusted at 1 mL/min and quantification was achieved with UV detection at 245 nm using meloxicam as internal standard. The second method was based on multivariate spectrophotometric analysis using partial least square regression model. The drug was subjected to acid, base, oxidative and thermal stress conditions and the degradation products were identified. The developed methods have the requisite accuracy, selectivity, sensitivity and precision to assay ACM in presence of its degradation products and impurities either in bulk powder or in pharmaceutical dosage form. The results obtained for the analysis of ACM in its pure form by the proposed methods were statistically compared to those obtained by applying a reported HPLC method. The statistical comparison showed that there is no significant difference between the proposed methods and the reported one with respect to accuracy and precision
    corecore