35 research outputs found

    Multicentre randomised controlled trial: protocol for Plasma-Lyte Usage and Assessment of Kidney Transplant Outcomes in Children (PLUTO)

    Get PDF
    INTRODUCTION: Acute electrolyte and acid-base imbalance is experienced by many children following kidney transplantation. When severe, this can lead to complications including seizures, cerebral oedema and death. Relatively large volumes of intravenous fluid are administered to children perioperatively in order to establish perfusion to the donor kidney, the majority of which are from living and deceased adult donors. Hypotonic intravenous fluid is commonly used in the post-transplant period due to clinicians' concerns about the sodium, chloride and potassium content of isotonic alternatives when administered in large volumes.Plasma-Lyte 148 is an isotonic, balanced intravenous fluid that contains sodium, chloride, potassium and magnesium with concentrations equivalent to those of plasma. There is a physiological basis to expect that Plasma-Lyte 148 will reduce the incidence of clinically significant electrolyte and acid-base abnormalities in children following kidney transplantation compared with current practice.The aim of the Plasma-Lyte Usage and Assessment of Kidney Transplant Outcomes in Children (PLUTO) trial was to determine whether the incidence of clinically significantly abnormal plasma electrolyte levels in paediatric kidney transplant recipients will be different with the use of Plasma-Lyte 148 compared with intravenous fluid currently administered. METHODS AND ANALYSIS: PLUTO is a pragmatic, open-label, randomised controlled trial comparing Plasma-Lyte 148 to current care in paediatric kidney transplant recipients, conducted in nine UK paediatric kidney transplant centres.A total of 144 children receiving kidney transplants will be randomised to receive either Plasma-Lyte 148 (the intervention) intraoperatively and postoperatively, or current fluid. Apart from intravenous fluid composition, all participants will receive standard clinical transplant care.The primary outcome measure is acute hyponatraemia in the first 72 hours post-transplant, defined as laboratory plasma sodium concentration of <135 mmol/L. Secondary outcomes include symptoms of acute hyponatraemia, other electrolyte and acid-base imbalances and transplant kidney function.The primary outcome will be analysed using a logistic regression model adjusting for donor type (living vs deceased donor), patient weight (<20 kg vs ≥20 kg pretransplant) and transplant centre as a random effect. ETHICS AND DISSEMINATION: The trial received Health Research Authority approval on 20 January 2020. Findings will be presented to academic groups via national and international conferences and peer-reviewed journals. The patient and public involvement group will play an important part in disseminating the study findings to the public domain

    Renal Transplantation: What Has Changed in Recent Years

    Get PDF
    Kidney transplantation is the best approved renal replacement therapy, although one of its biggest limitations remains a general organ donor shortage [1], not only in terms of absolute numbers, but particularly regarding preservation techniques. The concept of static cold storage has been proved to damage marginal organs that are increasingly being accepted to match the waitlist demand. Modern dynamic preservation technologies have developed in recent years not only to actively prevent kidney damage before transplantation, but also to assess potential organ viability. In this special issue, containing 12 manuscripts, we focus on hypothermic machine perfusion, showing in a matched observational study by M. I. Bellini et al. a higher eGFR at one-year followup with the dynamic preservation compared to static cold storage. Moreover, during hypothermic machine perfusion, resistive index predicted delayed graf function (DGF) with accuracy of 0.78 and 0.87 for organs from donation afer circulatory death (DCD) or afer brain death (DBD), respectively, and signifcantly decreased incidence of DGF in DCD organs

    A pragmatic, open-label, randomized controlled trial of Plasma-Lyte-148 versus standard intravenous fluids in children receiving kidney transplants (PLUTO)

    Get PDF
    Acute electrolyte and acid-base imbalance is experienced by many children following kidney transplant. This is partly because doctors give very large volumes of artificial fluids to keep the new kidney working. When severe, fluid imbalance can lead to seizures, cerebral edema and death. In this pragmatic, open-label, randomized controlled trial, we randomly assigned (1:1) pediatric kidney transplant recipients to Plasma-Lyte-148 or standard of care perioperative intravenous fluids (predominantly 0.45% sodium chloride and 0.9% sodium chloride solutions). We then compared clinically significant electrolyte and acid-base abnormalities in the first 72 hours post-transplant. The primary outcome, acute hyponatremia, was experienced by 53% of 68 participants in the Plasma-Lyte-148 group and 58% of 69 participants in the standard fluids group (odds ratio 0·77 (0·34 - 1·75)). Five of 16 secondary outcomes differed with Plasma-Lyte-148: hypernatremia was significantly more frequent (odds ratio 3·5 (1·1 - 10·8)), significantly fewer changes to fluid prescriptions were made (rate ratio 0·52 (0·40-0·67)), and significantly fewer participants experienced hyperchloremia (odds ratio 0·17 (0·07 - 0·40)), acidosis (odds ratio 0·09 (0·04 - 0·22)) and hypomagnesemia (odds ratio 0·21 (0·08 - 0·50)). No other secondary outcomes differed between groups. Serious adverse events were reported in 9% of participants randomized to Plasma-Lyte-148 and 7% of participants randomized to standard fluids. Thus, perioperative Plasma-Lyte-148 did not change the proportion of children who experienced acute hyponatremia compared to standard fluids. However fewer fluid prescription changes were made with Plasma-Lyte-148, while hyperchloremia and acidosis were less common

    European Society for Organ Transplantation (ESOT) Consensus Statement on the Role of Pancreas Machine Perfusion to Increase the Donor Pool for Beta Cell Replacement Therapy

    Get PDF
    The advent of Machine Perfusion (MP) as a superior form of preservation and assessment for cold storage of both high-risk kidney’s and the liver presents opportunities in the field of beta-cell replacement. It is yet unknown whether such techniques, when applied to the pancreas, can increase the pool of suitable donor organs as well as ameliorating the effects of ischemia incurred during the retrieval process. Recent experimental models of pancreatic MP appear promising. Applications of MP to the pancreas, needs refinement regarding perfusion protocols and organ viability assessment criteria. To address the “Role of pancreas machine perfusion to increase the donor pool for beta cell replacement,” the European Society for Organ Transplantation (ESOT) assembled a dedicated working group comprising of experts to review literature pertaining to the role of MP as a method of improving donor pancreas quality as well as quantity available for transplant, and to develop guidelines founded on evidence-based reviews in experimental and clinical settings. These were subsequently refined during the Consensus Conference when this took place in Prague.</p
    corecore