6 research outputs found

    Functional properties and projections of neurons in the medial amygdala

    Get PDF
    The medial nucleus of the amygdala (MeA) plays a key role in innate emotional behaviors by relaying olfactory information to hypothalamic nuclei involved in reproduction and defense. However, little is known about the neuronal components of this region or their role in the olfactory-processing circuitry of the amygdala. Here, we have characterized neurons in the posteroventral division of the medial amygdala (MePV) using the GAD67-GFP mouse. Based on their electrophysiological properties and GABA expression, unsupervised cluster analysis divided MePV neurons into three types of GABAergic (Types 1-3) and two non-GABAergic cells (Types I and II). All cell types received olfactory synaptic input from the accessory olfactory bulb and, with the exception of Type 2 GABAergic neurons, sent projections to both reproductive and defensive hypothalamic nuclei. Type 2 GABAergic cells formed a chemically and electrically interconnected network of local circuit inhibitory interneurons that resembled neurogliaform cells of the piriform cortex and provided feedforward inhibition of the olfactory-processing circuitry of the MeA. These findings provide a description of the cellular organization and connectivity of the MePV and further our understanding of amygdala circuits involved in olfactory processing and innate emotions

    Behavioral and histological assessment of the effect of intermittent feeding in the pilocarpine model of temporal lobe epilepsy

    No full text
    Temporal lobe epilepsy (TLE) is the most resistant type of epilepsy. Currently available drugs for epilepsy are not antiepileptogenic. A novel treatment for epilepsy would be to block or reverse the process of epileptogenesis. We used intermittent feeding (IF) regimen of the dietary restriction (DR) to study its effect on epileptogenesis and neuroprotection in the pilocarpine model of TLE in rats. The effect of IF regimen on the induction of status epilepticus (SE), the duration of latent period, and the frequency, duration, severity and the time of occurrence of Spontaneous Recurrent Seizures (SRS) were investigated. We also studied the effect of IF regimen on hippocampal neurons against the excitotoxic damage of prolonged SE (about 4 h) induced by pilocarpine. The animals (Wistar, male, 200-250 g) were divided into four main groups: AL-AL (ad libitum diet throughout), AL-IF (PfS) [IF post-first seizure], AL-IF (PSE) [IF post-SE] and IF-IF (IF diet throughout), and two AL and IF control groups. SE was induced by pilocarpine (350 mg/kg, i.p.) and with diazepam (6 mg/kg, i.p.) injected after 3 h, the behavioral signs of SE terminated at about 4 h (AL animals, n = 29, 260.43 ± 8.74 min; IF animals, n = 19, 224.32 ± 20.73 min). Behavioral monitoring was carried out by 24 h video recording for 3 weeks after the first SRS. Rat brains were then prepared for histological study with Nissl stain and cell counting was done in CA1, CA2 and CA3 regions of the hippocampus. The results show that the animals on IF diet had significantly less SE induction and significantly longer duration of latent period (the period of epileptogenesis) was seen in IF-IF group compared to the AL-AL group. The severity of SRS was significantly more in AL-IF (PfS) compared to the AL-IF (PSE) group. These results indicate that IF diet can make rats resistant to the induction of SE and can prolong the process of epileptogenesis. The results of the histological study show that the number of pyramidal neurons was statistically less in CA1, CA2 and CA3 of the hippocampus in the experimental groups compared to the control groups. However, IF regimen could not protect the hippocampal neurons against the excitotoxic injury caused by a prolonged SE. We conclude that IF regimen can significantly influence various behavioral characteristics of pilocarpine model of TLE. Further studies can elaborate the exact mechanisms as well as its possible role in the treatment of human TLE

    Estimating Soil Available Phosphorus Content through Coupled Wavelet–Data-Driven Models

    No full text
    Soil phosphorus (P) is a vital but limited element which is usually leached from the soil via the drainage process. Soil phosphorus as a soluble substance can be delivered through agricultural fields by runoff or soil loss. It is one of the most essential nutrients that affect the sustainability of crops as well as the energy transfer for living organisms. Therefore, an accurate simulation of soil phosphorus, which is considered as a point source pollutant in elevated contents, must be performed. Considering a crucial issue for a sustainable soil and water management, an effective soil phosphorus assessment in the current research was conducted with the aim of examining the capability of five different wavelet-based data-driven models: gene expression programming (GEP), neural networks (NN), random forest (RF), multivariate adaptive regression spline (MARS), and support vector machine (SVM) in modeling soil phosphorus (P). In order to achieve this goal, several parameters, including soil pH, organic carbon (OC), clay content, and soil P data, were collected from different regions of the Neyshabur plain, Khorasan-e-Razavi Province (Northeast Iran). First, a discrete wavelet transform (DWT) was applied to the pH, OC, and clay as the inputs and their subcomponents were utilized in the applied data-driven techniques. Statistical Gamma test was also used for identifying which effective soil parameter is able to influence soil P. The applied methods were assessed through 10-fold cross-validation scenarios. Our results demonstrated that the wavelet–GEP (WGEP) model outperformed the other models with respect to various validations, such as correlation coefficient (R), scatter index (SI), and Nash–Sutcliffe coefficient (NS) criteria. The GEP model improved the accuracy of the MARS, RF, SVM, and NN models with respect to SI-NS (By comparing the SI values of the GEP model with other models namely MARS, RF, SVM, and NN, the outputs of GEP showed more accuracy by 35%, 30%, 40%, 50%, respectively. Similarly, the results of the GEP outperformed the other models by 3.1%, 2.3%, 4.3%, and 7.6%, comparing their NS values.) by 35%-3.1%, 30%-2.3%, 40%-4.3%, and 50%-7.6%, respectively

    Four Novel p.N385K, p.V36A, c.1033–1034insT and c.1417–1418delCT Mutations in the Sphingomyelin Phosphodiesterase 1 (SMPD1) Gene in Patients with Types A and B Niemann-Pick Disease (NPD)

    No full text
    Background: Types A and B Niemann-Pick disease (NPD) are autosomal-recessive lysosomal storage disorders caused by the deficient activity of acid sphingomyelinase due to mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene. Methods: In order to determine the prevalence and distribution of SMPD1 gene mutations, the genomic DNA of 15 unrelated Iranian patients with types A and B NPD was examined using PCR, DNA sequencing and bioinformatics analysis. Results: Of 8 patients with the p.G508R mutation, 5 patients were homozygous, while the other 3 were heterozygous. One patient was heterozygous for both the p.N385K and p.G508R mutations. Another patient was heterozygous for both the p.A487V and p.G508R mutations. Two patients (one homozygous and one heterozygous) showed the p.V36A mutation. One patient was homozygous for the c.1033–1034insT mutation. One patient was homozygous for the c.573delT mutation, and 1 patient was homozygous for the c.1417–1418delCT mutation. Additionally, bioinformatics analysis indicated that two new p.V36A and p.N385K mutations decreased the acid sphingomyelinase (ASM) protein stability, which might be evidence to suggest the pathogenicity of these mutations. Conclusion: with detection of these new mutations, the genotypic spectrum of types A and B NPD is extended, facilitating the definition of disease-related mutations. However, more research is essential to confirm the pathogenic effect of these mutations
    corecore