8 research outputs found

    A Gradient Descent Algorithm on the Grassman Manifold for Matrix Completion

    Full text link
    We consider the problem of reconstructing a low-rank matrix from a small subset of its entries. In this paper, we describe the implementation of an efficient algorithm called OptSpace, based on singular value decomposition followed by local manifold optimization, for solving the low-rank matrix completion problem. It has been shown that if the number of revealed entries is large enough, the output of singular value decomposition gives a good estimate for the original matrix, so that local optimization reconstructs the correct matrix with high probability. We present numerical results which show that this algorithm can reconstruct the low rank matrix exactly from a very small subset of its entries. We further study the robustness of the algorithm with respect to noise, and its performance on actual collaborative filtering datasets.Comment: 26 pages, 15 figure

    Recommender Systems with Generative Retrieval

    Full text link
    Modern recommender systems perform large-scale retrieval by first embedding queries and item candidates in the same unified space, followed by approximate nearest neighbor search to select top candidates given a query embedding. In this paper, we propose a novel generative retrieval approach, where the retrieval model autoregressively decodes the identifiers of the target candidates. To that end, we create semantically meaningful tuple of codewords to serve as a Semantic ID for each item. Given Semantic IDs for items in a user session, a Transformer-based sequence-to-sequence model is trained to predict the Semantic ID of the next item that the user will interact with. To the best of our knowledge, this is the first Semantic ID-based generative model for recommendation tasks. We show that recommender systems trained with the proposed paradigm significantly outperform the current SOTA models on various datasets. In addition, we show that incorporating Semantic IDs into the sequence-to-sequence model enhances its ability to generalize, as evidenced by the improved retrieval performance observed for items with no prior interaction history.Comment: Preprint versio
    corecore