5 research outputs found
Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana
<p>Abstract</p> <p>Background</p> <p>All sequenced genomes contain a proportion of lineage-specific genes, which exhibit no sequence similarity to any genes outside the lineage. Despite their prevalence, the origins and functions of most lineage-specific genes remain largely unknown. As more genomes are sequenced opportunities for understanding evolutionary origins and functions of lineage-specific genes are increasing.</p> <p>Results</p> <p>This study provides a comprehensive analysis of the origins of lineage-specific genes (LSGs) in <it>Arabidopsis thaliana </it>that are restricted to the Brassicaceae family. In this study, lineage-specific genes within the nuclear (1761 genes) and mitochondrial (28 genes) genomes are identified. The evolutionary origins of two thirds of the lineage-specific genes within the <it>Arabidopsis thaliana </it>genome are also identified. Almost a quarter of lineage-specific genes originate from non-lineage-specific paralogs, while the origins of ~10% of lineage-specific genes are partly derived from DNA exapted from transposable elements (twice the proportion observed for non-lineage-specific genes). Lineage-specific genes are also enriched in genes that have overlapping CDS, which is consistent with such novel genes arising from overprinting. Over half of the subset of the 958 lineage-specific genes found only in <it>Arabidopsis thaliana </it>have alignments to intergenic regions in <it>Arabidopsis lyrata</it>, consistent with either <it>de novo </it>origination or differential gene loss and retention, with both evolutionary scenarios explaining the lineage-specific status of these genes. A smaller number of lineage-specific genes with an incomplete open reading frame across different <it>Arabidopsis thaliana </it>accessions are further identified as accession-specific genes, most likely of recent origin in <it>Arabidopsis thaliana</it>. Putative <it>de novo </it>origination for two of the <it>Arabidopsis thaliana</it>-only genes is identified via additional sequencing across accessions of <it>Arabidopsis thaliana </it>and closely related sister species lineages. We demonstrate that lineage-specific genes have high tissue specificity and low expression levels across multiple tissues and developmental stages. Finally, stress responsiveness is identified as a distinct feature of Brassicaceae-specific genes; where these LSGs are enriched for genes responsive to a wide range of abiotic stresses.</p> <p>Conclusion</p> <p>Improving our understanding of the origins of lineage-specific genes is key to gaining insights regarding how novel genes can arise and acquire functionality in different lineages. This study comprehensively identifies all of the Brassicaceae-specific genes in <it>Arabidopsis thaliana </it>and identifies how the majority of such lineage-specific genes have arisen. The analysis allows the relative importance (and prevalence) of different evolutionary routes to the genesis of novel ORFs within lineages to be assessed. Insights regarding the functional roles of lineage-specific genes are further advanced through identification of enrichment for stress responsiveness in lineage-specific genes, highlighting their likely importance for environmental adaptation strategies.</p
Evolutionary origins of brassicaceae specific genes in arabidopsis thaliana
Background: All sequenced genomes contain a proportion of lineage-specific genes, which exhibit no sequence similarity to any genes outside the lineage. Despite their prevalence, the origins and functions of most lineage specific genes remain largely unknown. As more genomes are sequenced opportunities for understanding evolutionary origins and functions of lineage-specific genes are increasing.
Results: This study provides a comprehensive analysis of the origins of lineage-specific genes (LSGs) in Arabidopsis thaliana that are restricted to the Brassicaceae family. In this study, lineage-specific genes within the nuclear (1761 genes) and mitochondrial (28 genes) genomes are identified. The evolutionary origins of two thirds of the lineage-specific genes within the Arabidopsis thaliana genome are also identified. Almost a quarter of lineage-specific genes originate from non-lineage-specific paralogs, while the origins of similar to 10% of lineage-specific genes are partly derived from DNA exapted from transposable elements (twice the proportion observed for non-lineage-specific genes). Lineage-specific genes are also enriched in genes that have overlapping CDS, which is consistent with such novel genes arising from overprinting. Over half of the subset of the 958 lineage-specific genes found only in Arabidopsis thaliana have alignments to intergenic regions in Arabidopsis lyrata, consistent with either de novo origination or differential gene loss and retention, with both evolutionary scenarios explaining the lineage-specific status of these genes. A smaller number of lineage-specific genes with an incomplete open reading frame across different Arabidopsis thaliana accessions are further identified as accession-specific genes, most likely of recent origin in Arabidopsis thaliana. Putative de novo origination for two of the Arabidopsis thaliana-only genes is identified via additional sequencing across accessions of Arabidopsis thaliana and closely related sister species lineages. We demonstrate that lineage-specific genes have high tissue specificity and low expression levels across multiple tissues and developmental stages. Finally, stress responsiveness is identified as a distinct feature of Brassicaceae-specific genes; where these LSGs are enriched for genes responsive to a wide range of abiotic stresses.
Conclusion: Improving our understanding of the origins of lineage-specific genes is key to gaining insights regarding how novel genes can arise and acquire functionality in different lineages. This study comprehensively identifies all of the Brassicaceae-specific genes in Arabidopsis thaliana and identifies how the majority of such lineage-specific genes have arisen. The analysis allows the relative importance (and prevalence) of different evolutionary routes to the genesis of novel ORFs within lineages to be assessed. Insights regarding the functional roles of lineage-specific genes are further advanced through identification of enrichment for stress responsiveness in lineage-specific genes, highlighting their likely importance for environmental adaptation strategies
Evolutionary origins of brassicaceae specific genes in arabidopsis thaliana
Background: All sequenced genomes contain a proportion of lineage-specific genes, which exhibit no sequence similarity to any genes outside the lineage. Despite their prevalence, the origins and functions of most lineage specific genes remain largely unknown. As more genomes are sequenced opportunities for understanding evolutionary origins and functions of lineage-specific genes are increasing.
Results: This study provides a comprehensive analysis of the origins of lineage-specific genes (LSGs) in Arabidopsis thaliana that are restricted to the Brassicaceae family. In this study, lineage-specific genes within the nuclear (1761 genes) and mitochondrial (28 genes) genomes are identified. The evolutionary origins of two thirds of the lineage-specific genes within the Arabidopsis thaliana genome are also identified. Almost a quarter of lineage-specific genes originate from non-lineage-specific paralogs, while the origins of similar to 10% of lineage-specific genes are partly derived from DNA exapted from transposable elements (twice the proportion observed for non-lineage-specific genes). Lineage-specific genes are also enriched in genes that have overlapping CDS, which is consistent with such novel genes arising from overprinting. Over half of the subset of the 958 lineage-specific genes found only in Arabidopsis thaliana have alignments to intergenic regions in Arabidopsis lyrata, consistent with either de novo origination or differential gene loss and retention, with both evolutionary scenarios explaining the lineage-specific status of these genes. A smaller number of lineage-specific genes with an incomplete open reading frame across different Arabidopsis thaliana accessions are further identified as accession-specific genes, most likely of recent origin in Arabidopsis thaliana. Putative de novo origination for two of the Arabidopsis thaliana-only genes is identified via additional sequencing across accessions of Arabidopsis thaliana and closely related sister species lineages. We demonstrate that lineage-specific genes have high tissue specificity and low expression levels across multiple tissues and developmental stages. Finally, stress responsiveness is identified as a distinct feature of Brassicaceae-specific genes; where these LSGs are enriched for genes responsive to a wide range of abiotic stresses.
Conclusion: Improving our understanding of the origins of lineage-specific genes is key to gaining insights regarding how novel genes can arise and acquire functionality in different lineages. This study comprehensively identifies all of the Brassicaceae-specific genes in Arabidopsis thaliana and identifies how the majority of such lineage-specific genes have arisen. The analysis allows the relative importance (and prevalence) of different evolutionary routes to the genesis of novel ORFs within lineages to be assessed. Insights regarding the functional roles of lineage-specific genes are further advanced through identification of enrichment for stress responsiveness in lineage-specific genes, highlighting their likely importance for environmental adaptation strategies
The AAA-type ATPase AtSKD1 contributes to vacuolar maintenance of Arabidopsis thaliana
P>The vacuole is the most prominent organelle of plant cells. Despite its importance for many physiological and developmental aspects of plant life, little is known about its biogenesis and maintenance. Here we show that Arabidopsis plants expressing a dominant-negative version of the AAA (ATPase associated with various cellular activities) ATPase AtSKD1 (SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1) under the control of the trichome-specific GLABRA2 (GL2) promoter exhibit normal vacuolar development in early stages of trichome development. Shortly after its formation, however, the large central vacuole is fragmented and finally disappears completely. Secretion assays with amylase fused to the vacuolar sorting signal of Sporamin show that dominant-negative AtSKD1 inhibits vacuolar trafficking of the reporter that is instead secreted. In addition, trichomes expressing dominant-negative AtSKD1 frequently contain multiple nuclei. Our results suggest that AtSKD1 contributes to vacuolar protein trafficking and thereby to the maintenance of the large central vacuole of plant cells, and might play a role in cell-cycle regulation