15 research outputs found

    Interferon-Gamma Stimulation Upregulates MHC-I, MHC-II, and PD-L1 in Yumm1.7-3.D8.B7 Melanoma Cell Line

    Get PDF
    https://openworks.mdanderson.org/sumexp21/1068/thumbnail.jp

    Defining T-Cell Responses to Mutant and Non-Mutant Antigens in Mouse Melanoma During Anti-CTLA-4 Immune Checkpoint Therapy

    Get PDF
    https://openworks.mdanderson.org/sumexp21/1216/thumbnail.jp

    BHLHE40 regulates the T-cell effector function required for tumor microenvironment remodeling and immune checkpoint therapy efficacy

    Get PDF
    Immune checkpoint therapy (ICT) using antibody blockade of programmed cell death protein 1 (PD-1) or cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) can provoke T cell-dependent antitumor activity that generates durable clinical responses in some patients. The epigenetic and transcriptional features that T cells require for efficacious ICT remain to be fully elucidated. Herein, we report that anti-PD-1 and anti-CTLA-4 ICT induce upregulation of the transcription factor BHLHE40 in tumor antigen-specific CD8+ and CD4+ T cells and that T cells require BHLHE40 for effective ICT in mice bearing immune-edited tumors. Single-cell RNA sequencing of intratumoral immune cells in BHLHE40-deficient mice revealed differential ICT-induced immune cell remodeling. The BHLHE40-dependent gene expression changes indicated dysregulated metabolism, NF-κB signaling, and IFNγ response within certain subpopulations of CD4+ and CD8+ T cells. Intratumoral CD4+ and CD8+ T cells from BHLHE40-deficient mice exhibited higher expression of the inhibitory receptor gene Tigit and displayed alterations in expression of genes encoding chemokines/chemokine receptors and granzyme family members. Mice lacking BHLHE40 had reduced ICT-driven IFNγ production by CD4+ and CD8+ T cells and defects in ICT-induced remodeling of macrophages from a CX3CR1+CD206+ subpopulation to an iNOS+ subpopulation that is typically observed during effective ICT. Although both anti-PD-1 and anti-CTLA-4 ICT in BHLHE40-deficient mice led to the same outcome-tumor outgrowth-several BHLHE40-dependent alterations were specific to the ICT that was used. Our results reveal a crucial role for BHLHE40 in effective ICT and suggest that BHLHE40 may be a predictive or prognostic biomarker for ICT efficacy and a potential therapeutic target

    PEG-8 Laurate Fermentation of Staphylococcus epidermidis Reduces the Required Dose of Clindamycin Against Cutibacterium acnes

    No full text
    The probiotic activity of skin Staphylococcus epidermidis (S. epidermidis) bacteria can elicit diverse biological functions via the fermentation of various carbon sources. Here, we found that polyethylene glycol (PEG)-8 Laurate, a carbon-rich molecule, can selectively induce the fermentation of S. epidermidis, not Cutibacterium acnes (C. acnes), a bacterium associated with acne vulgaris. The PEG-8 Laurate fermentation of S. epidermidis remarkably diminished the growth of C. acnes and the C. acnes-induced production of pro-inflammatory macrophage-inflammatory protein 2 (MIP-2) cytokines in mice. Fermentation media enhanced the anti-C. acnes activity of a low dose (0.1%) clindamycin, a prescription antibiotic commonly used to treat acne vulgaris, in terms of the suppression of C. acnes colonization and MIP-2 production. Furthermore, PEG-8 Laurate fermentation of S. epidermidis boosted the activity of 0.1% clindamycin to reduce the sizes of C. acnes colonies. Our results demonstrated, for the first time, that the PEG-8 Laurate fermentation of S. epidermidis displayed the adjuvant effect on promoting the efficacy of low-dose clindamycin against C. acnes. Targeting C. acnes by lowering the required doses of antibiotics may avoid the risk of creating drug-resistant C. acnes and maintain the bacterial homeostasis in the skin microbiome, leading to a novel modality for the antibiotic treatment of acne vulgaris

    Epigenetic Perspective of Immunotherapy for Cancers

    No full text
    Immunotherapy has brought new hope for cancer patients in recent times. However, despite the promising success of immunotherapy, there is still a need to address major challenges including heterogeneity in response among patients, the reoccurrence of the disease, and iRAEs (immune-related adverse effects). The first critical step towards solving these issues is understanding the epigenomic events that play a significant role in the regulation of specific biomolecules in the context of the immune population present in the tumor immune microenvironment (TIME) during various treatments and responses. A prominent advantage of this step is that it would enable researchers to harness the reversibility of epigenetic modifications for their druggability. Therefore, we reviewed the crucial studies in which varying epigenomic events were captured with immuno-oncology set-ups. Finally, we discuss the therapeutic possibilities of their utilization for the betterment of immunotherapy in terms of diagnosis, progression, and cure for cancer patients

    Epigenetic Perspective of Immunotherapy for Cancers

    No full text
    Immunotherapy has brought new hope for cancer patients in recent times. However, despite the promising success of immunotherapy, there is still a need to address major challenges including heterogeneity in response among patients, the reoccurrence of the disease, and iRAEs (immune-related adverse effects). The first critical step towards solving these issues is understanding the epigenomic events that play a significant role in the regulation of specific biomolecules in the context of the immune population present in the tumor immune microenvironment (TIME) during various treatments and responses. A prominent advantage of this step is that it would enable researchers to harness the reversibility of epigenetic modifications for their druggability. Therefore, we reviewed the crucial studies in which varying epigenomic events were captured with immuno-oncology set-ups. Finally, we discuss the therapeutic possibilities of their utilization for the betterment of immunotherapy in terms of diagnosis, progression, and cure for cancer patients

    Probiotic Activity of Staphylococcus epidermidis Induces Collagen Type I Production through FFaR2/p-ERK Signaling

    No full text
    Collagen type I is a key structural component of dermis tissue and is produced by fibroblasts and the extracellular matrix. The skin aging process, which is caused by intrinsic or extrinsic factors, such as natural aging or free radical exposure, greatly reduces collagen expression, thereby leading to obstructed skin elasticity. We investigated the effective fermentation of Cetearyl isononanoate (CIN), a polyethylene glycol (PEG) analog, as a carbon source with the skin probiotic bacterium Staphylococcus epidermidis (S.epidermidis) or butyrate, as their fermentation metabolites could noticeably restore collagen expression through phosphorylated extracellular signal regulated kinase (p-ERK) activation in mouse fibroblast cells and skin. Both the in vitro and in vivo knockdown of short-chain fatty acid (SCFA) or free fatty acid receptor 2 (FFaR2) considerably blocked the probiotic effect of S. epidermidis on p-ERK-induced collagen type I induction. These results demonstrate that butyric acid (BA) in the metabolites of fermenting skin probiotic bacteria mediates FFaR2 to induce the synthesis of collagen through p-ERK activation. We hereby imply that metabolites from the probiotic S. epidermidis fermentation of CIN as a potential carbon source could restore impaired collagen in the dermal extracellular matrix (ECM), providing integrity and elasticity to skin

    Probiotic Activity of <i>Staphylococcus epidermidis</i> Induces Collagen Type I Production through FFaR2/p-ERK Signaling

    No full text
    Collagen type I is a key structural component of dermis tissue and is produced by fibroblasts and the extracellular matrix. The skin aging process, which is caused by intrinsic or extrinsic factors, such as natural aging or free radical exposure, greatly reduces collagen expression, thereby leading to obstructed skin elasticity. We investigated the effective fermentation of Cetearyl isononanoate (CIN), a polyethylene glycol (PEG) analog, as a carbon source with the skin probiotic bacterium Staphylococcus epidermidis (S.epidermidis) or butyrate, as their fermentation metabolites could noticeably restore collagen expression through phosphorylated extracellular signal regulated kinase (p-ERK) activation in mouse fibroblast cells and skin. Both the in vitro and in vivo knockdown of short-chain fatty acid (SCFA) or free fatty acid receptor 2 (FFaR2) considerably blocked the probiotic effect of S. epidermidis on p-ERK-induced collagen type I induction. These results demonstrate that butyric acid (BA) in the metabolites of fermenting skin probiotic bacteria mediates FFaR2 to induce the synthesis of collagen through p-ERK activation. We hereby imply that metabolites from the probiotic S. epidermidis fermentation of CIN as a potential carbon source could restore impaired collagen in the dermal extracellular matrix (ECM), providing integrity and elasticity to skin

    Transcriptome analysis of genes associated with breast cancer cell motility in response to Artemisinin treatment

    No full text
    Abstract Background Well-known anti-malarial drug artemisinin exhibits potent anti-cancerous activities. In-vivo and in-vitro studies showed its anti-tumor and immunomodulatory properties signifying it as a potent drug candidate for study. The studies of mechanisms of cell movement are relevant which can be understood by knowing the involvement of genes in an effect of a drug. Although cytotoxicity and anti-proliferative activity of artemisinin is evident, the genes participating in its anti-migratory and reduced invasive effect are not well studied. The present study reports the alteration in the expression of 84 genes involved in cell motility upon artemisinin treatment in MCF-7 breast cancer cells using pathway focused gene expression PCR array. In addition, the effect of artemisinin on epigenetic modifier HDACs is studied. Methods We checked the functional stimulus of artemisinin on cell viability, migration, invasion and apoptosis in breast cancerous cell lines. Using qRT-PCR and western blot, we validated the altered expression of relevant genes associated with proliferation, migration, invasion, apoptosis and mammary gland development. Results Artemisinin inhibited cell proliferation of estrogen receptor negative breast cancer cells with fewer efficacies in comparison to estrogen receptor positive ones. At the same time, cell viability and proliferation of normal breast epithelial MCF10A cells was un-affected. Artemisinin strongly inhibited cancer cell migration and invasion. Along with orphan nuclear receptors (ERRα, ERRβ and ERRγ), artemisinin altered the ERα/ERβ/PR/Her expression status of MCF-7 cells. The expression of genes involved in the signaling pathways associated with proliferation, migration, invasion and apoptosis was significantly altered which cooperatively resulted into reduced growth promoting activities of breast cancer cells. Interestingly, artemisinin exhibited inhibitory effect on histone deacetylases (HDACs). Conclusions Upregulated expression of tumor suppressor genes along with reduced expression of oncogenes significantly associated with growth stimulating signaling pathways in response to artemisinin treatment suggests its efficacy as an effective drug in breast cancer treatment

    Prospects of acne vaccines targeting secreted virulence factors of Cutibacterium acnes

    No full text
    Introduction: Acne vulgaris afflicts many people, and despite the multitude of the anti-acne products on the market, there is still no effective treatment that can prevent and cure this disease. The severity of acne vulgaris is highly associated with the inflammatory response to Propionibacterium acnes (P. acnes) now referred to as Cutibacterium acnes (C. acnes), an opportunistic skin bacterium in the human skin microbiome. Areas covered: We here provide the prospects of creating acne vaccines targeting secreted virulence factors of C. acnes including secretory Christie-Atkins-Munch-Peterson (CAMP) factor. Neutralization of secreted virulence factors by either active or passive vaccination may have a lower risk of disturbing the microbial ecosystem in the human skin microbiome. Expert opinion: Major steps could be taken to start a public vaccination program at an early age to prevent the future occurrence of acne vulgaris. Future therapeutic monoclonal antibodies can be designed to specifically neutralize virulence factors of C. acnes including CAMP factors without disrupting the optimal balance of C. acnes in the human skin microbiome and lowering the risk of creating drug-resistant C. acnes. Targeting secreted virulence factors without disturbing the commensal relationship of host can be a novel gateway towards the therapeutic treatment of acne vulgaris
    corecore