339 research outputs found

    AN EXPLORATION OF HUMAN TERRITORIALITY IN FOREST RECREATION

    Get PDF
    Abstract: Previous studies in human territoriality have focused largely on behavior in urban settings. It is only recently that researchers are examining this construct in the context of forest settings. This study was designed to assess the territorial responses of visitors to Bald Eagle State Forest in central Pennsylvania and explore the structure and predictive validity of a proposed territoriality scale. Results indicated the sample was relatively homogenous in terms of demographics but included consumptive as well as non-consumptive forest visitors. Further analysis demonstrated only limited support for an exploratory territoriality scale and suggested the need for further research into the meaning and structure of human territoriality in forest recreation settings

    Piroxicam and intracavitary platinum-based chemotherapy for the treatment of advanced mesothelioma in pets: preliminary observations

    Get PDF
    Malignant Mesothelioma is an uncommon and very aggressive tumor that accounts for 1% of all the deaths secondary to malignancy in humans. Interestingly, this neoplasm has been occasionally described in companion animals as well. Aim of this study was the preclinical evaluation of the combination of piroxicam with platinum-based intracavitary chemotherapy in pets. Three companion animals have been treated in a three years period with this combination. Diagnosis was obtained by ultrasonographic exam of the body cavities that evidenced thickening of the mesothelium. A surgical biopsy further substantiated the diagnosis. After drainage of the malignant effusion from the affected cavity, the patients received four cycles of intracavitary CDDP at the dose of 50 mg/m2 every three weeks if dogs or four cycles of intracavitary carboplatin at the dose of 180 mg/m2 (every 3 weeks) if cats, coupled with daily administration of piroxicam at the dose of 0.3 mg/kg. The therapy was able to arrest the effusion in all patients for variable remission times: one dog is still in remission after 3 years, one dog died of progressive disease after 8 months and one cat died due to progressive neoplastic growth after six months, when the patient developed a mesothelial cuirass. The combination showed remarkable efficacy at controlling the malignant effusion secondary to MM in our patients and warrants further investigations

    A Comprehensive Classification and Evolutionary Analysis of Plant Homeobox Genes

    Get PDF
    The full complement of homeobox transcription factor sequences, including genes and pseudogenes, was determined from the analysis of 10 complete genomes from flowering plants, moss, Selaginella, unicellular green algae, and red algae. Our exhaustive genome-wide searches resulted in the discovery in each class of a greater number of homeobox genes than previously reported. All homeobox genes can be unambiguously classified by sequence evolutionary analysis into 14 distinct classes also characterized by conserved intron–exon structure and by unique codomain architectures. We identified many new genes belonging to previously defined classes (HD-ZIP I to IV, BEL, KNOX, PLINC, WOX). Other newly identified genes allowed us to characterize PHD, DDT, NDX, and LD genes as members of four new evolutionary classes and to define two additional classes, which we named SAWADEE and PINTOX. Our comprehensive analysis allowed us to identify several newly characterized conserved motifs, including novel zinc finger motifs in SAWADEE and DDT. Members of the BEL and KNOX classes were found in Chlorobionta (green plants) and in Rhodophyta. We found representatives of the DDT, WOX, and PINTOX classes only in green plants, including unicellular green algae, moss, and vascular plants. All 14 homeobox gene classes were represented in flowering plants, Selaginella, and moss, suggesting that they had already differentiated in the last common ancestor of moss and vascular plants

    Novel essential amino acid supplements enriched with L-leucine facilitate increased protein and energy intakes in older women: a randomised controlled trial

    Get PDF
    Background: Inadequate protein intake (PI), containing a sub-optimal source of essential amino acids (EAAs), and reduced appetite are contributing factors to age-related sarcopenia. The satiating effects of dietary protein per se may negatively affect energy intake (EI), thus there is a need to explore alternative strategies to facilitate PI without compromising appetite and subsequent EI. Methods: Older women completed two experiments (EXP1 and EXP2) where they consumed either a Bar (565 kJ), a Gel (477 kJ), both rich in EAAs (7.5 g, 40% L-leucine), or nothing (Control). In EXP1, participants (n=10, 68±5 years, mean±SD) consumed Bar, Gel or Control with appetite sensations and appetite-related hormonal responses monitored for one hour, followed by consumption of an ad libitum breakfast (ALB). In EXP2, participants (n=11, 69±5 years) ingested Bar, Gel or Control alongside an ALB. Results: In EXP1, EI at ALB was not different (P=0.674) between conditions (1179±566, 1254±511, 1206±550 kJ for the Control, Bar, and Gel respectively). However, total EI was significantly higher in the Bar and Gel compared to the Control after accounting for the energy content of the supplements (P<0.0005). Analysis revealed significantly higher appetite Area under the Curve (AUC) (P<0.007), a tendency for higher acylated ghrelin AUC (P=0.087), and significantly lower pancreatic polypeptide AUC (P=0.02) in the Control compared with the Bar and Gel. In EXP2, EI at ALB was significantly higher (P=0.028) in the Control (1282±513 kJ) compared to the Bar (1026±565 kJ) and Gel (1064±495 kJ). However, total EI was significantly higher in the Bar and Gel after accounting for the energy content of the supplements (P<0.007). Conclusions: Supplementation with either the Bar or Gel increased total energy intake whether consumed one hour before or during breakfast. This may represent an effective nutritional means for addressing protein and total energy deficiencies in older women

    CXCL1 can be regulated by IL-6 and promotes granulocyte adhesion to brain capillaries during bacterial toxin exposure and encephalomyelitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Granulocytes generally exert protective roles in the central nervous system (CNS), but recent studies suggest that they can be detrimental in experimental autoimmune encephalomyelitis (EAE), the most common model of multiple sclerosis. While the cytokines and adhesion molecules involved in granulocyte adhesion to the brain vasculature have started to be elucidated, the required chemokines remain undetermined.</p> <p>Methods</p> <p>CXCR2 ligand expression was examined in the CNS of mice suffering from EAE or exposed to bacterial toxins by quantitative RT-PCR and <it>in situ </it>hybridization. CXCL1 expression was analyzed in IL-6-treated endothelial cell cultures by quantitative RT-PCR and ELISA. Granulocytes were counted in the brain vasculature after treatment with a neutralizing anti-CXCL1 antibody using stereological techniques.</p> <p>Results</p> <p>CXCL1 was the most highly expressed ligand of the granulocyte receptor CXCR2 in the CNS of mice subjected to EAE or infused with lipopolysaccharide (LPS) or pertussis toxin (PTX), the latter being commonly used to induce EAE. IL-6 upregulated CXCL1 expression in brain endothelial cells by acting transcriptionally and mediated the stimulatory effect of PTX on CXCL1 expression. The anti-CXCL1 antibody reduced granulocyte adhesion to brain capillaries in the three conditions under study. Importantly, it attenuated EAE severity when given daily for a week during the effector phase of the disease.</p> <p>Conclusions</p> <p>This study identifies CXCL1 not only as a key regulator of granulocyte recruitment into the CNS, but also as a new potential target for the treatment of neuroinflammatory diseases such as multiple sclerosis.</p

    Mechanisms of seawater acclimation in a primitive, anadromous fish, the green sturgeon

    Get PDF
    Relatively little is known about salinity acclimation in the primitive groups of fishes. To test whether physiological preparative changes occur and to investigate the mechanisms of salinity acclimation, anadromous green sturgeon, Acipenser medirostris (Chondrostei) of three different ages (100, 170, and 533 dph) were acclimated for 7 weeks to three different salinities (<3, 10, and 33 ppt). Gill, kidney, pyloric caeca, and spiral intestine tissues were assayed for Na+, K+-ATPase activity; and gills were analyzed for mitochondria-rich cell (MRC) size, abundance, localization and Na+, K+-ATPase content. Kidneys were analyzed for Na+, K+-ATPase localization and the gastro-intestinal tract (GIT) was assessed for changes in ion and base content. Na+, K+-ATPase activities increased in the gills and decreased in the kidneys with increasing salinity. Gill MRCs increased in size and decreased in relative abundance with fish size/age. Gill MRC Na+, K+-ATPase content (e.g., ion-pumping capacity) was proportional to MRC size, indicating greater abilities to regulate ions with size/age. Developmental/ontogenetic changes were seen in the rapid increases in gill MRC size and lamellar length between 100 and 170 dph. Na+, K+-ATPase activities increased fourfold in the pyloric caeca in 33 ppt, presumably due to increased salt and water absorption as indicated by GIT fluids, solids, and ion concentrations. In contrast to teleosts, a greater proportion of base (HCO3− and 2CO32−) was found in intestinal precipitates than fluids. Green sturgeon osmo- and ionoregulate with similar mechanisms to more-derived teleosts, indicating the importance of these mechanisms during the evolution of fishes, although salinity acclimation may be more dependent on body size

    A Strawberry KNOX Gene Regulates Leaf, Flower and Meristem Architecture

    Get PDF
    The KNOTTED-LIKE HOMEODOMAIN (KNOX) genes play a central role in maintenance of the shoot apical meristem. They also contribute to the morphology of simple and compound leaves. In this report we characterize the FaKNOX1 gene from strawberry (Fragaria spp.) and demonstrate its function in trasgenic plants. The FaKNOX1 cDNA was isolated from a cultivated strawberry (F.×ananassa) flower EST library. The sequence is most similar to Class I KNOX genes, and was mapped to linkage group VI of the diploid strawberry genome. Unlike most KNOX genes studied, steady-state transcript levels were highest in flowers and fruits. Transcripts were also detected in emerging leaf primordia and the apical dome. Transgenic strawberry plants suppressing or overexpressing FaKNOX1 exhibited conspicuous changes in plant form. The FaKNOX1 RNAi plants presented a dwarfed phenotype with deeply serrated leaflets and exaggerated petiolules. They also exhibited a high level of cellular disorganization of the shoot apical meristem and leaves. Overexpression of FaKNOX1 caused dwarfed stature with wrinkled leaves. These gain- and loss-of-function assays in strawberry functionally demonstrate the contributions of a KNOX domain protein in a rosaceous species
    corecore