50 research outputs found
Physical IC debug ─ backside approach and nanoscale challenge
Physical analysis for IC functionality in submicron technologies requires access through chip backside. Based upon typical global backside preparation with 50–100 µm moderate silicon thickness remaining, a state of the art of the analysis techniques available for this purpose is presented and evaluated for functional analysis and layout pattern resolution potential. A circuit edit technique valid for nano technology ICs, is also presented that is based upon the formation of local trenches using the bottom of Shallow Trench Isolation (STI) as endpoint for Focused Ion Beam (FIB) milling. As a derivative from this process, a locally ultra thin silicon device can be processed, creating a back surface as work bench for breakthrough applications of nanoscale analysis techniques to a fully functional circuit through chip backside. Several applications demonstrate the power and potential of this new approach
ESMO - Magnitude of Clinical Benefit Scale V.1.0 questions and answers
The ESMO Magnitude of Clinical Benefit Scale (ESMO-MCBS) is a standardised, generic, validated tool to stratify the magnitude of clinical benefit that can be anticipated from anticancer therapies. The ESMO-MCBS is intended to both assist oncologists in explaining the likely benefits of a particular treatment to their patients as well as to aid public health decision makers' prioritise therapies for reimbursement. From its inception the ESMO-MCBS Working Group has invited questions and critiques to promote understanding and to address misunderstandings regarding the nuanced use of the scale, and to identify shortcomings in the scale to be addressed in future planned revisions and updates. The ESMO-MCBS V.1.0 has attracted many questions regarding its development, structure and potential applications. These questions, together with responses from the ESMO-MCBS Working Group, have been edited and collated, and are herein presented as a supplementary resource.SCOPUS: re.jinfo:eu-repo/semantics/publishe
Vitamin D supplementation and breast cancer prevention : a systematic review and meta-analysis of randomized clinical trials
In recent years, the scientific evidence linking vitamin D status or supplementation to breast cancer has grown notably. To investigate the role of vitamin D supplementation on breast cancer incidence, we conducted a systematic review and meta-analysis of randomized controlled trials comparing vitamin D with placebo or no treatment. We used OVID to search MEDLINE (R), EMBASE and CENTRAL until April 2012. We screened the reference lists of included studies and used the “Related Article” feature in PubMed to identify additional articles. No language restrictions were applied. Two reviewers independently extracted data on methodological quality, participants, intervention, comparison and outcomes. Risk Ratios and 95% Confident Intervals for breast cancer were pooled using a random-effects model. Heterogeneity was assessed using the I2 test. In sensitivity analysis, we assessed the impact of vitamin D dosage and mode of administration on treatment effects. Only two randomized controlled trials fulfilled the pre-set inclusion criteria. The pooled analysis included 5372 postmenopausal women. Overall, Risk Ratios and 95% Confident Intervals were 1.11 and 0.74–1.68. We found no evidence of heterogeneity. Neither vitamin D dosage nor mode of administration significantly affected breast cancer risk. However, treatment efficacy was somewhat greater when vitamin D was administered at the highest dosage and in combination with calcium (Risk Ratio 0.58, 95% Confident Interval 0.23–1.47 and Risk Ratio 0.93, 95% Confident Interval 0.54–1.60, respectively). In conclusions, vitamin D use seems not to be associated with a reduced risk of breast cancer development in postmenopausal women. However, the available evidence is still limited and inadequate to draw firm conclusions. Study protocol code: FARM8L2B5L