45 research outputs found

    Description of the compiled experimental data available in the MACSUR CropM database

    Get PDF
    The input data necessary for crop model simulations and data for their calibration/validation (and thus requirements for observations and measurements in suitable experiments) have been collected through out the project together with data for additional analysis of abiotic factors influencing yields. A list of possible dataset was collated in the first year of project however very few of the existing datasets were found usable for the crop model simulation as they fell short of the requirements defined in the part 2.3. However database has been populated as planned with the results of the ongoing MACSUR studies and will serve in the same way for the MACSUR 2 duration

    How Do Various Maize Crop Models Vary in Their Responses to Climate Change Factors?

    Get PDF
    Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly -0.5 Mg ha(sup 1) per degC. Doubling [CO2] from 360 to 720 lmol mol 1 increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2] among models. Model responses to temperature and [CO2] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information

    Global wheat production with 1.5 and 2.0°C above pre‐industrial warming

    Get PDF
    Efforts to limit global warming to below 2°C in relation to the pre‐industrial level are under way, in accordance with the 2015 Paris Agreement. However, most impact research on agriculture to date has focused on impacts of warming >2°C on mean crop yields, and many previous studies did not focus sufficiently on extreme events and yield interannual variability. Here, with the latest climate scenarios from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project, we evaluated the impacts of the 2015 Paris Agreement range of global warming (1.5 and 2.0°C warming above the pre‐industrial period) on global wheat production and local yield variability. A multi‐crop and multi‐climate model ensemble over a global network of sites developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) for Wheat was used to represent major rainfed and irrigated wheat cropping systems. Results show that projected global wheat production will change by −2.3% to 7.0% under the 1.5°C scenario and −2.4% to 10.5% under the 2.0°C scenario, compared to a baseline of 1980–2010, when considering changes in local temperature, rainfall, and global atmospheric CO2 concentration, but no changes in management or wheat cultivars. The projected impact on wheat production varies spatially; a larger increase is projected for temperate high rainfall regions than for moderate hot low rainfall and irrigated regions. Grain yields in warmer regions are more likely to be reduced than in cooler regions. Despite mostly positive impacts on global average grain yields, the frequency of extremely low yields (bottom 5 percentile of baseline distribution) and yield inter‐annual variability will increase under both warming scenarios for some of the hot growing locations, including locations from the second largest global wheat producer—India, which supplies more than 14% of global wheat. The projected global impact of warming <2°C on wheat production is therefore not evenly distributed and will affect regional food security across the globe as well as food prices and trade

    Cereal yield gaps across Europe

    Get PDF
    peer-reviewedEurope accounts for around 20% of the global cereal production and is a net exporter of ca. 15% of that production. Increasing global demand for cereals justifies questions as to where and by how much Europe’s production can be increased to meet future global market demands, and how much additional nitrogen (N) crops would require. The latter is important as environmental concern and legislation are equally important as production aims in Europe. Here, we used a country-by-country, bottom-up approach to establish statistical estimates of actual grain yield, and compare these to modelled estimates of potential yields for either irrigated or rainfed conditions. In this way, we identified the yield gaps and the opportunities for increased cereal production for wheat, barley and maize, which represent 90% of the cereals grown in Europe. The combined mean annual yield gap of wheat, barley, maize was 239 Mt, or 42% of the yield potential. The national yield gaps ranged between 10 and 70%, with small gaps in many north-western European countries, and large gaps in eastern and south-western Europe. Yield gaps for rainfed and irrigated maize were consistently lower than those of wheat and barley. If the yield gaps of maize, wheat and barley would be reduced from 42% to 20% of potential yields, this would increase annual cereal production by 128 Mt (39%). Potential for higher cereal production exists predominantly in Eastern Europe, and half of Europe’s potential increase is located in Ukraine, Romania and Poland. Unlocking the identified potential for production growth requires a substantial increase of the crop N uptake of 4.8 Mt. Across Europe, the average N uptake gaps, to achieve 80% of the yield potential, were 87, 77 and 43 kg N ha−1 for wheat, barley and maize, respectively. Emphasis on increasing the N use efficiency is necessary to minimize the need for additional N inputs. Whether yield gap reduction is desirable and feasible is a matter of balancing Europe’s role in global food security, farm economic objectives and environmental targets.We received financial contributions from the strategic investment funds (IPOP) of Wageningen University & Research, Bill & Melinda Gates Foundation, MACSUR under EU FACCE-JPI which was funded through several national contributions, and TempAg (http://tempag.net/)

    The chaos in calibrating crop models

    Full text link
    Calibration, the estimation of model parameters based on fitting the model to experimental data, is among the first steps in many applications of system models and has an important impact on simulated values. Here we propose and illustrate a novel method of developing guidelines for calibration of system models. Our example is calibration of the phenology component of crop models. The approach is based on a multi-model study, where all teams are provided with the same data and asked to return simulations for the same conditions. All teams are asked to document in detail their calibration approach, including choices with respect to criteria for best parameters, choice of parameters to estimate and software. Based on an analysis of the advantages and disadvantages of the various choices, we propose calibration recommendations that cover a comprehensive list of decisions and that are based on actual practices.HighlightsWe propose a new approach to deriving calibration recommendations for system modelsApproach is based on analyzing calibration in multi-model simulation exercisesResulting recommendations are holistic and anchored in actual practiceWe apply the approach to calibration of crop models used to simulate phenologyRecommendations concern: objective function, parameters to estimate, software usedCompeting Interest StatementThe authors have declared no competing interest

    Long Term Simulation of Soil/crop Interactions to Estimate Management Zones and Consequences for Site Specific Nitrogen Management Considering Water Protection

    No full text
    Simulations of water and nitrogen dynamics and crop growth of winter wheat were performed for 2 fields in different landscapes of Germany. One field in the north west shows a clear spatial structure and soil texture. Spatial yield data of 3 years were used to validate the model. Stable high and low yield areas were derived from simulations over 32 years. Fertilizer scenarios were used to estimate the amount of maximum annual nitrogen fertilization to meet drinking water standard.JRC.H.6-Spatial data infrastructure

    Proposal and extensive test of a calibration protocol for crop phenology models

    Get PDF
    A major effect of environment on crops is through crop phenology, and therefore, the capacity to predict phenology for new environments is important. Mechanistic crop models are a major tool for such predictions, but calibration of crop phenology models is difficult and there is no consensus on the best approach. We propose an original, detailed approach for calibration of such models, which we refer to as a calibration protocol. The protocol covers all the steps in the calibration workflow, namely choice of default parameter values, choice of objective function, choice of parameters to estimate from the data, calculation of optimal parameter values, and diagnostics. The major innovation is in the choice of which parameters to estimate from the data, which combines expert knowledge and data-based model selection. First, almost additive parameters are identified and estimated. This should make bias (average difference between observed and simulated values) nearly zero. These are "obligatory" parameters, that will definitely be estimated. Then candidate parameters are identified, which are parameters likely to explain the remaining discrepancies between simulated and observed values. A candidate is only added to the list of parameters to estimate if it leads to a reduction in BIC (Bayesian Information Criterion), which is a model selection criterion. A second original aspect of the protocol is the specification of documentation for each stage of the protocol. The protocol was applied by 19 modeling teams to three data sets for wheat phenology. All teams first calibrated their model using their "usual" calibration approach, so it was possible to compare usual and protocol calibration. Evaluation of prediction error was based on data from sites and years not represented in the training data. Compared to usual calibration, calibration following the new protocol reduced the variability between modeling teams by 22% and reduced prediction error by 11%

    Crop growth and soil water fluxes at erosion‐affected arable sites: Using weighing lysimeter data for model intercomparison

    Get PDF
    Agroecosystem models need to reliably simulate all biophysical processes that control crop growth, particularly the soil water fluxes and nutrient dynamics. As a result of the erosion history, truncated and colluvial soil profiles coexist in arable fields. The erosion‐affected field‐scale soil spatial heterogeneity may limit agroecosystem model predictions. The objective was to identify the variation in the importance of soil properties and soil profile modifications in agroecosystem models for both agronomic and environmental performance. Four lysimeters with different soil types were used that cover the range of soil variability in an erosion‐affected hummocky agricultural landscape. Twelve models were calibrated on crop phenological stages, and model performance was tested against observed grain yield, aboveground biomass, leaf area index, actual evapotranspiration, drainage, and soil water content. Despite considering identical input data, the predictive capability among models was highly diverse. Neither a single crop model nor the multi‐model mean was able to capture the observed differences between the four soil profiles in agronomic and environmental variables. The model's sensitivity to soil‐related parameters was apparently limited and dependent on model structure and parameterization. Information on phenology alone seemed insufficient to calibrate crop models. The results demonstrated model‐specific differences in the impact of soil variability and suggested that soil matters in predictive agroecosystem models. Soil processes need to receive greater attention in field‐scale agroecosystem modeling; high‐precision weighable lysimeters can provide valuable data for improving the description of soil–vegetation–atmosphere process in the tested models
    corecore