3,607 research outputs found
The optical gain lever: A novel gain mechanism in the direct modulation of quantum well semiconductor lasers
A new gain mechanism active in certain quantum well laser diode structures is demonstrated and explained theoretically. It enhances the modulation amplitude produced by either optical or electrical modulation of quantum well structures. In the devices tested, power gains of 6 dB were measured from low frequency to frequencies of several gigahertz. Higher gains may be possible in optimized structures
Changing, priming, and acting on values: Effects via motivational relations in a circular model
Circular models of values and goals suggest that some motivational aims are consistent with each other, some oppose each other, and others are orthogonal to each other. The present experiments tested this idea explicitly by examining how value confrontation and priming methods influence values and value-consistent behaviors throughout the entire value system. Experiment 1 revealed that change in 1 set of social values causes motivationally compatible values to increase in importance, whereas motivationally incompatible values decrease in importance and orthogonal values remain the same. Experiment 2 found that priming security values reduced the better-than-average effect, but priming stimulation values increased it. Similarly, Experiments 3 and 4 found that priming security values increased cleanliness and decreased curiosity behaviors, whereas priming self-direction values decreased cleanliness and increased curiosity behaviors. Experiment 5 found that priming achievement values increased success at puzzle completion and decreased helpfulness to an experimenter, whereas priming with benevolence values decreased success and increased helpfulness. These results highlight the importance of circular models describing motivational interconnections between values and personal goals
Laboratory measurement of the pure rotational spectrum of vibrationally excited HCO^+ (v_2 = 1) by far-infrared laser sideband spectroscopy
Laboratory observations of the pure rotational spectrum of HCO^+ in its lowest excited bending state
(v_1, v^l_2 v_3)_= (0,1^1,0) are reported. Because of their severe excitation requirements, such vibrational satellites
and the high-J ground-state lines also measured here sample only hot, dense regions of matter in active molecular
cloud cores and circumstellar envelopes. As the HCO^+ abundance is tied directly to the gas fractional ionization, it is probable that the vibrationally excited formyl ion transitions will provide high-contrast
observations of shocked molecular material, rather than the more quiescent, radiatively heated gas surrounding
stellar sources detected with the few vibrationally excited neutral species observed to date
Improved hydrogen gas production in microbial electrolysis cells using inexpensive recycled carbon fibre fabrics
Growing energy demands of wastewater treatment have made it vital for water companies to develop less energy intensive processes for treating wastewater if net zero emissions are to be achieved by 2050. Microbial electrolysis cells (MECs) have the potential to do this by treating water and producing renewable hydrogen gas as a product, but capital and operational costs have slowed their deployment. By using recycled carbon fibre mats, commercially viable MECs can brought closer to reality, where recycled carbon fibre anode MECs treating real wastewater (normalised ~3100 L d−1) were producing 66.77 L H2 d−1 while graphite felt anode MECs produced 3.65 L H2 d−1 per 1 m3 reactor, anodes costing £5.53 m−2 and £88.36 m−2 respectively, resulting in a total anode cost saving of 93%. This could incentivise the development of larger pilot systems, opening the door for generating greater value and a more sustainable wastewater treatment industry
30-nm wavelength conversion at 10 Gbit/s by four-wave mixing in a semiconductor optical amplifier
Four-wave mixing (FWM) in semiconductor optical amplifiers (SOAs) is currently the only available strictly transparent wavelength-conversion technique, which is not penalized by phase matching. The span of the conversion is limited primarily by conversion efficiency and signal-to-noise (SNR) issues, both of which are expected to improve with the use of longer SOAs. In this paper, we demonstrate significantly enhanced performance of long converters in a system experiment at 10 Gbit/s. The experiment shows for the first time, to our knowledge, that FWM wavelength down-conversions can span the full gain bandwidth of erbium-doped fiber amplifiers
Tunable far-infrared laser spectroscopy of hydrogen bonds: The K_a = O(u)→1(g) rotation-tunneling spectrum of the HCI dimer
The ground state K_a =0(u)→1(g) b‐type subband of the rotation–tunneling spectrum of the symmetric ^(35)Cl–^(35)Cl,^(37)Cl–^(37)Cl, and the mixed ^(35)Cl–^(37)Cl hydrogen chloride dimers have been recorded near 26.3 cm^(−1) with sub‐Doppler resolution in a continuous two‐dimensional supersonic jet with a tunable far‐infrared laser spectrometer. Quadrupole hyperfine structure from the chlorine nuclei has been resolved. From the fitted rotational constants a (H^(35)Cl)_2 center‐of‐mass separation of 3.81 Å is derived for the K_a =1(g) levels, while the nuclear quadrupole coupling constants yield a vibrationally averaged angular structure for both tunneling states of approximately 20–25 deg for the hydrogen bonded proton and at least 70–75 deg for the external proton. This nearly orthogonal structure agrees well with that predicted by ab initio theoretical calculations, but the observed splittings and intensity alterations of the lines indicate that the chlorine nuclei are made equivalent by a large amplitude tunneling motion of the HCl monomers. A similar geared internal rotation tunneling motion has been found for the HF dimer, but here the effect is much greater. The ground state tunneling splittings are estimated to lie between 15–18 cm^(−1), and the selection rules observed indicate that the trans tunneling path dominates the large amplitude motion, as expected, provided the dimer remains planar. From the observed hyperfine constants, we judge the dimer and its associated tunneling motion to be planar to within 10°
Kiwi forego vison in the guidance of their nocturnal activities
We propose that the Kiwi visual system has undergone adaptive regression evolution driven by the trade-off between the relatively low rate of gain of visual information that is possible at low light levels, and the metabolic costs of extracting that information
Analysis of the 2007/8 Defra Farm Business Survey Energy Module
Key points This study has delivered an invaluable baseline estimate of energy
use and greenhouse gas (GHG) emissions on commercial farms in England. Energy
use and GHG emissions associated with particular commodities were quantified and
results broadly agreed with those derived by Life Cycle Assessment, but with
much scatter in the environmental performance of farms.Direct energy use on
farms was generally less that indirect (embedded) energy use, except for
horticulture, which is dominated by heating fuel use. In contrast, most GHG
emissions are incurred on farms, rather than as embedded emissions.Scatter in
both environmental and economic performance underlies the somewhat disappointing
finding of no clear positive link between farm financial performance and energy
use or GHG emissions. However, the mere existence of these ranges shows that
there is scope for improvement in both financial and environmental performance
and that there is no apparent barrier for both to be achievable in harmony. The
recording of such farm-level energy data is essential for the future, as it
should enable improvements to be made in efficiency of energy use. The improved
UK agricultural GHG inventory will depend on high quality energy data on
agricultural activities. This study will be invaluable in identifying the level
of detail needed. Future data requirements include: contractor work rates and
fuel use per unit area and per unit time, fertiliser and pesticide use by brand
name, enhanced output data, especially animal live weights, and horticultural
produce recorded by weight rather than by value
Synthesis of luminescent silicon clusters by spark ablation
The synthesis of luminescent nanometer-scale Si clusters by spark ablation from a crystalline Si substrate is described. The cluster source, described in the text, generates clusters in a flowing Ar stream at atmospheric pressure. Electron microscopy reveals that the clusters have diameters in the 2-4 nm size range. The luminescence spectra of the clusters, similar to that of porous Si, are presented
- …