120 research outputs found
HiPERCAM: A high-speed quintuple-beam CCD camera for the study of rapid variability in the universe
HiPERCAM is a high-speed camera for the study of rapid variability in the Universe. The project is funded by a ϵ3.5M European Research Council Advanced Grant. HiPERCAM builds on the success of our previous instrument, ULTRACAM, with very significant improvements in performance thanks to the use of the latest technologies. HiPERCAM will use 4 dichroic beamsplitters to image simultaneously in 5 optical channels covering the u'g'r'I'z' bands. Frame rates of over 1000 per second will be achievable using an ESO CCD controller (NGC), with every frame GPS timestamped. The detectors are custom-made, frame-transfer CCDs from e2v, with 4 low noise (2.5e -) outputs, mounted in small thermoelectrically-cooled heads operated at 180 K, resulting in virtually no dark current. The two reddest CCDs will be deep-depletion devices with anti-etaloning, providing high quantum efficiencies across the red part of the spectrum with no fringing. The instrument will also incorporate scintillation noise correction via the conjugate-plane photometry technique. The opto-mechanical chassis will make use of additive manufacturing techniques in metal to make a light-weight, rigid and temperature-invariant structure. First light is expected on the 4.2m William Herschel Telescope on La Palma in 2017 (on which the field of view will be 10' with a 0.3"/pixel scale), with subsequent use planned on the 10.4m Gran Telescopio Canarias on La Palma (on which the field of view will be 4' with a 0.11"/pixel scale) and the 3.5m New Technology Telescope in Chile
Configuration of readout electronics and data acquisition for the HiPERCAM instrument
© 2018 SPIE. HiPERCAM is a five channel fast photometer to study high temporal variability of the universe, covering from 0.3 to 1.0 microns in five wavebands. HiPERCAM uses custom-made 2Kx1K split-frame transfer CCDs mounted in separate compact camera heads and cooled by thermoelectric coolers to 180K. The demands on the readout system are very unique to this instrument in that all five CCDs are operated in a pseudo drift window mode along with the normal windowing, binning and full-frame modes. The pseudo drift mode involves reading out small window regions from 2 quadrants of each CCD, with the possibility to exceed 1 kHz window rates per output channel. The CCDs are custom manufactured by Teledyne e2v to allow independent serial clock controls for each output. The devices are manufactured in standard and deep-depletion processes with appropriate anti-reflection coatings to achieve high quantum efficiencies in each of the five wavebands. An ESO NGC controller has been configured to control and readout all five CCDs. The data acquisition software has been modified to provide GPS timestamping of the data and access to the acquired data in real time for the data reduction software. The instrument has had its first light and first science observations on the 4.2m William Herschel Telescope, La Palma during a commissioning run in October 2017 and subsequently on the 10.4m Gran Telescopio Canarias in February 2018 and science observations in April 2018. This paper will present the details of the preamplifier electronics, configuration of the readout electronics and the data acquisition software to support the unique readout modes along with the overall performance of the instrument
A View of Tropical Cyclones from Above: The Tropical Cyclone Intensity Experiment
Tropical cyclone (TC) outflow and its relationship to TC intensity change and structure were investigated in the Office of Naval Research Tropical Cyclone Intensity (TCI) field program during 2015 using dropsondes deployed from the innovative new High-Definition Sounding System (HDSS) and remotely sensed observations from the Hurricane Imaging Radiometer (HIRAD), both on board the NASA WB-57 that flew in the lower stratosphere. Three noteworthy hurricanes were intensively observed with unprecedented horizontal resolution: Joaquin in the Atlantic and Marty and Patricia in the eastern North Pacific. Nearly 800 dropsondes were deployed from the WB-57 flight level of ∼60,000 ft (∼18 km), recording atmospheric conditions from the lower stratosphere to the surface, while HIRAD measured the surface winds in a 50-km-wide swath with a horizontal resolution of 2 km. Dropsonde transects with 4–10-km spacing through the inner cores of Hurricanes Patricia, Joaquin, and Marty depict the large horizontal and vertical gradients in winds and thermodynamic properties. An innovative technique utilizing GPS positions of the HDSS reveals the vortex tilt in detail not possible before. In four TCI flights over Joaquin, systematic measurements of a major hurricane’s outflow layer were made at high spatial resolution for the first time. Dropsondes deployed at 4-km intervals as the WB-57 flew over the center of Hurricane Patricia reveal in unprecedented detail the inner-core structure and upper-tropospheric outflow associated with this historic hurricane. Analyses and numerical modeling studies are in progress to understand and predict the complex factors that influenced Joaquin’s and Patricia’s unusual intensity changes
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Dying well with reduced agency: a scoping review and thematic synthesis of the decision-making process in dementia, traumatic brain injury and frailty
Background
In most Anglophone nations, policy and law increasingly foster an autonomy-based model, raising issues for large numbers of people who fail to fit the paradigm, and indicating problems in translating practical and theoretical understandings of ‘good death’ to policy. Three exemplar populations are frail older people, people with dementia and people with severe traumatic brain injury. We hypothesise that these groups face some over-lapping challenges in securing good end-of-life care linked to their limited agency. To better understand these challenges, we conducted a scoping review and thematic synthesis.
Methods
To capture a range of literature, we followed established scoping review methods. We then used thematic synthesis to describe the broad themes emerging from this literature.
Results
Initial searches generated 22,375 references, and screening yielded 49, highly heterogeneous, studies that met inclusion criteria, encompassing 12 countries and a variety of settings. The thematic synthesis identified three themes: the first concerned the processes of end-of-life decision-making, highlighting the ambiguity of the dominant shared decision-making process, wherein decisions are determined by families or doctors, sometimes explicitly marginalising the antecedent decisions of patients. Despite this marginalisation, however, the patient does play a role both as a social presence and as an active agent, by whose actions the decisions of those with authority are influenced. The second theme examined the tension between predominant notions of a good death as ‘natural’ and the drive to medicalise death through the lens of the experiences and actions of those faced with the actuality of death. The final theme considered the concept of antecedent end-of-life decision-making (in all its forms), its influence on policy and decision-making, and some caveats that arise from the studies.
Conclusions
Together these three themes indicate a number of directions for future research, which are likely to be applicable to other conditions that result in reduced agency. Above all, this review emphasises the need for new concepts and fresh approaches to end of life decision-making that address the needs of the growing population of frail older people, people with dementia and those with severe traumatic brain injury
Early life child micronutrient status, maternal reasoning, and a nurturing household environment have persistent influences on child cognitive development at age 5 years: Results from MAL-ED
Background: Child cognitive development is influenced by early-life insults and protective factors. To what extent these factors have a long-term legacy on child development and hence fulfillment of cognitive potential is unknown. Objective: The aim of this study was to examine the relation between early-life factors (birth to 2 y) and cognitive development at 5 y. Methods: Observational follow-up visits were made of children at 5 y, previously enrolled in the community-based MAL-ED longitudinal cohort. The burden of enteropathogens, prevalence of illness, complementary diet intake, micronutrient status, and household and maternal factors from birth to 2 y were extensively measured and their relation with the Wechsler Preschool Primary Scales of Intelligence at 5 y was examined through use of linear regression. Results: Cognitive T-scores from 813 of 1198 (68%) children were examined and 5 variables had significant associations in multivariable models: mean child plasma transferrin receptor concentration (β: −1.81, 95% CI: −2.75, −0.86), number of years of maternal education (β: 0.27, 95% CI: 0.08, 0.45), maternal cognitive reasoning score (β: 0.09, 95% CI: 0.03, 0.15), household assets score (β: 0.64, 95% CI: 0.24, 1.04), and HOME child cleanliness factor (β: 0.60, 95% CI: 0.05, 1.15). In multivariable models, the mean rate of enteropathogen detections, burden of illness, and complementary food intakes between birth and 2 y were not significantly related to 5-y cognition. Conclusions: A nurturing home context in terms of a healthy/clean environment and household wealth, provision of adequate micronutrients, maternal education, and cognitive reasoning have a strong and persistent influence on child cognitive development. Efforts addressing aspects of poverty around micronutrient status, nurturing caregiving, and enabling home environments are likely to have lasting positive impacts on child cognitive development.publishedVersio
Early Life Child Micronutrient Status, Maternal Reasoning, and a Nurturing Household Environment have Persistent Influences on Child Cognitive Development at Age 5 years : Results from MAL-ED
Funding Information: The Etiology, Risk Factors and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development Project (MAL-ED) is carried out as a collaborative project supported by the Bill & Melinda Gates Foundation, the Foundation for the NIH, and the National Institutes of Health/Fogarty International Center. This work was also supported by the Fogarty International Center, National Institutes of Health (D43-TW009359 to ETR). Author disclosures: BJJM, SAR, LEC, LLP, JCS, BK, RR, RS, ES, LB, ZR, AM, RS, BN, SH, MR, RO, ETR, and LEM-K, no conflicts of interest. Supplemental Tables 1–5 and Supplemental Figures 1–3 are available from the “Supplementary data” link in the online posting of the article and from the same link in the online table of contents at https://academic.oup.com/jn/. Address correspondence to LEM-K (e-mail: [email protected]). Abbreviations used: HOME, Home Observation for Measurement of the Environment inventory; MAL-ED, The Etiology, Risk Factors, and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development Project; TfR, transferrin receptor; WPPSI, Wechsler Preschool Primary Scales of Intelligence.Peer reviewe
- …