2 research outputs found

    Alcohol Inhibits Organic Dust-Induced ICAM-1 Expression on Bronchial Epithelial Cells

    No full text
    Aims: Exposure to dusts/bioaerosols in concentrated animal feeding operations (CAFOs) results in inflammatory lung diseases in workers. Hog CAFOs dust extract (HDE) increases expression of intercellular adhesion molecule-1 (ICAM-1), neutrophil adhesion, and TNFα release in bronchial epithelial cells. Alcohol consumption is increasingly recognized to impair lung immunity. We hypothesized that alcohol impairs HDE-induced TNFα, ICAM-1 expression, and neutrophil adhesion by directly inhibiting TNFα converting enzyme (TACE) activity. Methods: Bronchial epithelial cells (BEAS-2B) and primary human bronchial epithelial cells were pretreated with ethanol (EtOH) or TACE inhibitor. ICAM-1 surface expression; TNFα release; and TACE activity were analyzed following HDE stimulation. The effect of alcohol and TACE inhibition on HDE-regulated epithelial cell/neutrophil adhesion interactions was investigated. Finally; utilizing an established animal model; C57BL/6 mice were fed ad libitum ethanol (20%) in drinking water for 8 weeks followed by daily intranasal inhalation of HDE or saline during the final two weeks. Mice were sacrificed and lung sections immunostained for ICAM-1. Results: Pretreatment with alcohol or TACE inhibitor significantly decreased HDE-induced ICAM-1 expression and TNFα release. HDE augmented neutrophil adhesion to epithelial cells, which was decreased with alcohol (32% decrease) or TACE inhibitor (55% decrease) pretreatment. TACE activity increased following HDE exposure, but TACE activity was inhibited following alcohol pretreatment. Alcohol-fed mice demonstrated decreased HDE-induced airway epithelium ICAM-1 expression. Conclusions: Alcohol diminishes HDE-induced ICAM-1 expression, TNFα release, and neutrophil adhesion via inhibition of TACE activity. These results suggest that alcohol may be an important modulator of lung innate immune responses following CAFO exposure

    Evolution over Time of Ventilatory Management and Outcome of Patients with Neurologic Disease∗

    No full text
    OBJECTIVES: To describe the changes in ventilator management over time in patients with neurologic disease at ICU admission and to estimate factors associated with 28-day hospital mortality. DESIGN: Secondary analysis of three prospective, observational, multicenter studies. SETTING: Cohort studies conducted in 2004, 2010, and 2016. PATIENTS: Adult patients who received mechanical ventilation for more than 12 hours. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among the 20,929 patients enrolled, we included 4,152 (20%) mechanically ventilated patients due to different neurologic diseases. Hemorrhagic stroke and brain trauma were the most common pathologies associated with the need for mechanical ventilation. Although volume-cycled ventilation remained the preferred ventilation mode, there was a significant (p < 0.001) increment in the use of pressure support ventilation. The proportion of patients receiving a protective lung ventilation strategy was increased over time: 47% in 2004, 63% in 2010, and 65% in 2016 (p < 0.001), as well as the duration of protective ventilation strategies: 406 days per 1,000 mechanical ventilation days in 2004, 523 days per 1,000 mechanical ventilation days in 2010, and 585 days per 1,000 mechanical ventilation days in 2016 (p < 0.001). There were no differences in the length of stay in the ICU, mortality in the ICU, and mortality in hospital from 2004 to 2016. Independent risk factors for 28-day mortality were age greater than 75 years, Simplified Acute Physiology Score II greater than 50, the occurrence of organ dysfunction within first 48 hours after brain injury, and specific neurologic diseases such as hemorrhagic stroke, ischemic stroke, and brain trauma. CONCLUSIONS: More lung-protective ventilatory strategies have been implemented over years in neurologic patients with no effect on pulmonary complications or on survival. We found several prognostic factors on mortality such as advanced age, the severity of the disease, organ dysfunctions, and the etiology of neurologic disease
    corecore