36 research outputs found

    Soil microbial community composition as affected by restoration practices in California grassland

    Get PDF
    Agricultural practices have strong impacts on soil microbes including both the indices related to biomass and activity as well as those related to community composition. In a grassland restoration project in California, where native perennial bunchgrasses were introduced into non-native annual grassland after a period of intensive tillage, weeding, and herbicide use to reduce the annual seed bank, microbial community composition was investigated. Three treatments were compared: annual grassland, bare soil fallow, and restored perennial grassland. Soil profiles down to 80cm in depth were investigated in four separate layers (0–15, 15–30, 30–60, and 60–80cm) using both phospholipid ester-linked fatty acid (PLFAs) and ergosterol as biomarkers in addition to microbial biomass C by fumigation extraction. PLFA fingerprinting showed much stronger differences between the tilled bare fallow treatment vs. grasslands, compared to fewer differences between restored perennial grassland and annual grassland. The presence or absence of plants over several years clearly distinguished microbial communities. Microbial communities in lower soil layers were little affected by management practices. Regardless of treatment, soil depth caused a strong gradient of changing habitat conditions, which was reflected in Canonical Correspondence Analysis of PLFAs. Fungal organisms were associated with the presence of plants and/or litter since the total amount and the relative proportion of fungal markers were reduced in the tilled bare fallow and in lower layers of the grassland treatments. Total PLFA and soil microbial biomass were highly correlated, and fungal PLFA biomarkers showed strong correlations to ergosterol content. In conclusion, microbial communities are resilient to the grassland restoration process, but do not reflect the change in plant species composition that occurred after planting native bunchgrasses

    Review of research to inform California's climate scoping plan: Agriculture and working lands

    Full text link
    Agriculture in California contributes 8% of the state's greenhouse gas (GHG) emissions. To inform the state's policy and program strategy to meet climate targets, we review recent research on practices that can reduce emissions, sequester carbon and provide other co-benefits to producers and the environment across agriculture and rangeland systems. Importantly, the research reviewed here was conducted in California and addresses practices in our specific agricultural, socioeconomic and biophysical environment. Farmland conversion and the dairy and intensive livestock sector are the largest contributors to GHG emissions and offer the greatest opportunities for avoided emissions. We also identify a range of other opportunities including soil and nutrient management, integrated and diversified farming systems, rangeland management, and biomass-based energy generation. Additional research to replicate and quantify the emissions reduction or carbon sequestration potential of these practices will strengthen the evidence base for California climate policy

    Climate-smart agriculture global research agenda: Scientific basis for action

    Get PDF
    Background: Climate-smart agriculture (CSA) addresses the challenge of meeting the growing demand for food, fibre and fuel, despite the changing climate and fewer opportunities for agricultural expansion on additional lands. CSA focuses on contributing to economic development, poverty reduction and food security; maintaining and enhancing the productivity and resilience of natural and agricultural ecosystem functions, thus building natural capital; and reducing trade-offs involved in meeting these goals. Current gaps in knowledge, work within CSA, and agendas for interdisciplinary research and science-based actions identified at the 2013 Global Science Conference on Climate-Smart Agriculture (Davis, CA, USA) are described here within three themes: (1) farm and food systems, (2) landscape and regional issues and (3) institutional and policy aspects. The first two themes comprise crop physiology and genetics, mitigation and adaptation for livestock and agriculture, barriers to adoption of CSA practices, climate risk management and energy and biofuels (theme 1); and modelling adaptation and uncertainty, achieving multifunctionality, food and fishery systems, forest biodiversity and ecosystem services, rural migration from climate change and metrics (theme 2). Theme 3 comprises designing research that bridges disciplines, integrating stakeholder input to directly link science, action and governance. Outcomes: In addition to interdisciplinary research among these themes, imperatives include developing (1) models that include adaptation and transformation at either the farm or landscape level; (2) capacity approaches to examine multifunctional solutions for agronomic, ecological and socioeconomic challenges; (3) scenarios that are validated by direct evidence and metrics to support behaviours that foster resilience and natural capital; (4) reductions in the risk that can present formidable barriers for farmers during adoption of new technology and practices; and (5) an understanding of how climate affects the rural labour force, land tenure and cultural integrity, and thus the stability of food production. Effective work in CSA will involve stakeholders, address governance issues, examine uncertainties, incorporate social benefits with technological change, and establish climate finance within a green development framework. Here, the socioecological approach is intended to reduce development controversies associated with CSA and to identify technologies, policies and approaches leading to sustainable food production and consumption patterns in a changing climate

    Assessment of carbon in woody plants and soil across a vineyard-woodland landscape

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantification of ecosystem services, such as carbon (C) storage, can demonstrate the benefits of managing for both production and habitat conservation in agricultural landscapes. In this study, we evaluated C stocks and woody plant diversity across vineyard blocks and adjoining woodland ecosystems (wildlands) for an organic vineyard in northern California. Carbon was measured in soil from 44 one m deep pits, and in aboveground woody biomass from 93 vegetation plots. These data were combined with physical landscape variables to model C stocks using a geographic information system and multivariate linear regression.</p> <p>Results</p> <p>Field data showed wildlands to be heterogeneous in both C stocks and woody tree diversity, reflecting the mosaic of several different vegetation types, and storing on average 36.8 Mg C/ha in aboveground woody biomass and 89.3 Mg C/ha in soil. Not surprisingly, vineyard blocks showed less variation in above- and belowground C, with an average of 3.0 and 84.1 Mg C/ha, respectively.</p> <p>Conclusions</p> <p>This research demonstrates that vineyards managed with practices that conserve some fraction of adjoining wildlands yield benefits for increasing overall C stocks and species and habitat diversity in integrated agricultural landscapes. For such complex landscapes, high resolution spatial modeling is challenging and requires accurate characterization of the landscape by vegetation type, physical structure, sufficient sampling, and allometric equations that relate tree species to each landscape. Geographic information systems and remote sensing techniques are useful for integrating the above variables into an analysis platform to estimate C stocks in these working landscapes, thereby helping land managers qualify for greenhouse gas mitigation credits. Carbon policy in California, however, shows a lack of focus on C stocks compared to emissions, and on agriculture compared to other sectors. Correcting these policy shortcomings could create incentives for ecosystem service provision, including C storage, as well as encourage better farm stewardship and habitat conservation.</p

    Sustainable and Equitable Increases in Fruit and Vegetable Productivity and Consumption are Needed to Achieve Global Nutrition Security

    Get PDF
    Increased intake of fruits and vegetables (F&V) is recommended for most populations across the globe. However, the current state of global and regional food systems is such that F&V availability, the production required to sustain them, and consumer food choices are all severely deficient to meet this need. Given the critical state of public health and nutrition worldwide, as well as the fragility of the ecological systems and resources on which they rely, there is a great need for research, investment, and innovation in F&V systems to nourish our global population. Here, we review the challenges that must be addressed in order to expand production and consumption of F&V sustainably and on a global scale. At the conclusion of the workshop, the gathered participants drafted the “Aspen/Keystone Declaration” (see below), which announces the formation of a new “Community of Practice,” whose area of work is described in this position paper. The need for this work is based on a series of premises discussed in detail at the workshop and summarized herein. To surmount these challenges, opportunities are presented for growth and innovation in F&V food systems. The paper is organized into five sections based on primary points of intervention in global F&V systems: (1) research and development, (2) information needs to better inform policy & investment, (3) production (farmers, farming practices, and supply), (4) consumption (availability, access, and demand), and (5) sustainable & equitable F&V food systems and supply chains

    The effect of mineral-ion interactions on soil hydraulic conductivity

    Get PDF
    The reuse of winery wastewater (WW) could provide an alternative water source for vineyard irrigation.The shift of many wineries and other food processing industries to K+-based cleaners requires studies onthe effects of K+on soil hydraulic conductivity (HC). Depending on clay content and mineral composition,K+additions can affect the HC either positively or negatively. Soil mineralogy was anticipated to exhibita strong influence on HC responses and, therefore, soils of contrasting mineralogy were evaluated forchanges in soil HC resulting from applications of solutions elevated in Na+and K+. To examine the impactof mineral-ion relationships on HC, soils dominant in montmorillonite, vermiculite, or kaolinite from theNapa and Lodi wine regions of California, were packed into soil columns to observe changes in leachatechemistry and HC. Irrigation with Na+- and K+-rich WW was simulated by applying solutions at sodiumabsorption ratio (SAR) values of 3, 6, and 9 and potassium absorption ratio (PAR) values of 1, 2, 4, and 9.While HC was reduced in the 2:1 clay soils (montmorillonite and vermiculite) for all SAR treatments, thevermiculite and the kaolinite rich soils exhibited equal or greater reductions in HC for PAR treatments, ascompared with the SAR treatments. Findings from this evaluation of the interaction of Na+and K+withthree different mineral soils suggest that the reuse of WW with increasing PAR are least problematic formontmorillonite dominated soils and most detrimental to the HC of the vermiculite dominated soil. Thepresence of minerals with a high affinity for K+(e.g., vermiculite, mica) in this soil suggest that the inter-layer binding of K+could lead to greater reductions in HC. Full analysis of soil and WW is recommendedprior to all land applications
    corecore