980 research outputs found
A field compensated Michelson spectrometer for the visible region
Imperial Users onl
Accurate 3D reconstruction of bony surfaces using ultrasonic synthetic aperture techniques for robotic knee arthroplasty
Robotically guided knee arthroplasty systems generally require an individualized, preoperative 3D model of the knee joint. This is typically measured using Computed Tomography (CT) which provides the required accuracy for preoperative surgical intervention planning. Ultrasound imaging presents an attractive alternative to CT, allowing for reductions in cost and the elimination of doses of ionizing radiation, whilst maintaining the accuracy of the 3D model reconstruction of the joint. Traditional phased array ultrasound imaging methods, however, are susceptible to poor resolution and signal to noise ratios (SNR). Alleviating these weaknesses by offering superior focusing power, synthetic aperture methods have been investigated extensively within ultrasonic non-destructive testing. Despite this, they have yet to be fully exploited in medical imaging. In this paper, the ability of a robotic deployed ultrasound imaging system based on synthetic aperture methods to accurately reconstruct bony surfaces is investigated. Employing the Total Focussing Method (TFM) and the Synthetic Aperture Focussing Technique (SAFT), two samples were imaged which were representative of the bones of the knee joint: a human-shaped, composite distal femur and a bovine distal femur. Data were captured using a 5MHz, 128 element 1D phased array, which was manipulated around the samples using a robotic positioning system. Three dimensional surface reconstructions were then produced and compared with reference models measured using a precision laser scanner. Mean errors of 0.82 mm and 0.88 mm were obtained for the composite and bovine samples, respectively, thus demonstrating the feasibility of the approach to deliver the sub-millimetre accuracy required for the application
Structures of falcipain-2 and falcipain-3 bound to small molecule inhibitors: implications for substrate specificity.
Falcipain-2 and falcipain-3 are critical hemoglobinases of Plasmodium falciparum, the most virulent human malaria parasite. We have determined the 2.9 A crystal structure of falcipain-2 in complex with the epoxysuccinate E64 and the 2.5 A crystal structure of falcipain-3 in complex with the aldehyde leupeptin. These complexes represent the first crystal structures of plasmodial cysteine proteases with small molecule inhibitors and the first reported crystal structure of falcipain-3. Our structural analyses indicate that the relative shape and flexibility of the S2 pocket are affected by a number of discrete amino acid substitutions. The cumulative effect of subtle differences, including those at "gatekeeper" positions, may explain the observed kinetic differences between these two closely related enzymes
Development of the ALMA-North America Sideband-Separating SIS Mixers
As the Atacama Large Millimeter/submillimeter Array (ALMA) nears completion,
73 dual-polarization receivers have been delivered for each of Bands 3 (84-116
GHz) and 6 (211-275 GHz). The receivers use sideband-separating superconducting
Nb/Al-AlOx/Nb tunnel-junction (SIS) mixers, developed for ALMA to suppress
atmospheric noise in the image band. The mixers were designed taking into
account dynamic range, input return loss, and signal-to-image conversion (which
can be significant in SIS mixers). Typical SSB receiver noise temperatures in
Bands 3 and 6 are 30 K and 60 K, resp., and the image rejection is typically 15
dB.Comment: Submitted to IEEE Trans. Microwave Theory Tech., June 2013. 10 pages,
21 figure
Briefing: UK Ministry of Defence Force Protection Engineering Programme
The Defence Science and Technology Laboratory sponsored, QinetiQ-led Force Protection Engineering Research Programme has two main strands, applied and underpinning research. The underpinning strand is led by Blastech Ltd. One focus of this research is into the response of geomaterials to threat loading. The programme on locally won fill is split into four main characterisation strands: high-stress (GPa) static pressureāvolume; medium-rate pressureāvolume (split Hopkinson bar); high-rate (flyer plate) pressureāvolume; and unifying modelling research at the University of Sheffield, which has focused on developing a high-quality dataset for locally won fill in low and medium strain rates. With the test apparatus at Sheffield well-controlled tests can be conducted at both high strain rate and pseudo-static rates up to stress levels of 1 GPa. The University of Cambridge has focused on using one-dimensional shock experiments to examine high-rate pressureāvolume relationships. Both establishments are examining the effect of moisture content and starting density on emergent rate effects. Blastech Ltd has been undertaking carefully controlled fragment impact experiments, within the dataspace developed by the Universities of Sheffield and Cambridge. The data from experiments are unified by the QinetiQ-led modelling team, to predict material behaviour and to derive a scalable locally won fill model for use in any situation
- ā¦