650 research outputs found

    Interrogating Solar Flare Loop Models with IRIS Observations 2: Plasma Properties, Energy Transport, and Future Directions

    Full text link
    During solar flares a tremendous amount of magnetic energy is released and transported through the Sun's atmosphere and out into the heliosphere. Despite over a century of study, many unresolved questions surrounding solar flares are still present. Among those are how does the solar plasma respond to flare energy deposition, and what are the important physical processes that transport that energy from the release site in the corona through the transition region and chromosphere? Attacking these questions requires the concert of advanced numerical simulations and high spatial-, temporal-, and spectral- resolution observations. While flares are 3D phenomenon, simulating the NLTE flaring chromosphere in 3D and performing parameter studies of 3D models is largely outwith our current computational capabilities. We instead rely on state-of-the-art 1D field-aligned simulations to study the physical processes that govern flares. Over the last decade, data from the Interface Region Imaging Spectrograph (IRIS) have provided the crucial observations with which we can critically interrogate the predictions of those flare loop models. Here in Paper 2 of a two-part review of IRIS and flare loop models, I discuss how forward modelling flares can help us understand the observations from IRIS, and how IRIS can reveal where our models do well and where we are likely missing important processes, focussing in particular on the plasma properties, energy transport mechanisms, and future directions of flare modelling.Comment: Accepted for publication in Frontiers in Astronomy and Space Sciences (Research Topic: Flare Observations in the IRIS Era: What Have we Learned, and What's Next

    Interrogating solar flare loop models with IRIS observations 2: Plasma properties, energy transport, and future directions

    Get PDF
    During solar flares a tremendous amount of magnetic energy is released and transported through the Sun’s atmosphere and out into the heliosphere. Despite over a century of study, many unresolved questions surrounding solar flares are still present. Among those are how does the solar plasma respond to flare energy deposition, and what are the important physical processes that transport that energy from the release site in the corona through the transition region and chromosphere? Attacking these questions requires the concert of advanced numerical simulations and high spatial-, temporal-, and spectral-resolution observations. While flares are 3D phenomenon, simulating the NLTE flaring chromosphere in 3D and performing parameter studies of 3D models is largely outwith our current computational capabilities. We instead rely on state-of-the-art 1D field-aligned simulations to study the physical processes that govern flares. Over the last decade, data from the Interface Region Imaging Spectrograph (IRIS) have provided the crucial observations with which we can critically interrogate the predictions of those flare loop models. Here in Paper 2 of a two-part review of IRIS and flare loop models, I discuss how forward modelling flares can help us understand the observations from IRIS, and how IRIS can reveal where our models do well and where we are likely missing important processes, focussing in particular on the plasma properties, energy transport mechanisms, and future directions of flare modelling

    IRIS Observations of the Mg II h & k Lines During a Solar Flare

    Get PDF
    The bulk of the radiative output of a solar flare is emitted from the chromosphere, which produces enhancements in the optical and UV continuum, and in many lines, both optically thick and thin. We have, until very recently, lacked observations of two of the strongest of these lines: the Mg II h & k resonance lines. We present a detailed study of the response of these lines to a solar flare. The spatial and temporal behaviour of the integrated intensities, k/h line ratios, line of sight velocities, line widths and line asymmetries were investigated during an M class flare (SOL2014-02-13T01:40). Very intense, spatially localised energy input at the outer edge of the ribbon is observed, resulting in redshifts equivalent to velocities of ~15-26km/s, line broadenings, and a blue asymmetry in the most intense sources. The characteristic central reversal feature that is ubiquitous in quiet Sun observations is absent in flaring profiles, indicating that the source function increases with height during the flare. Despite the absence of the central reversal feature, the k/h line ratio indicates that the lines remain optically thick during the flare. Subordinate lines in the Mg II passband are observed to be in emission in flaring sources, brightening and cooling with similar timescales to the resonance lines. This work represents a first analysis of potential diagnostic information of the flaring atmosphere using these lines, and provides observations to which synthetic spectra from advanced radiative transfer codes can be compared.Comment: 12 pages, 14 figures, Accepted for publication in Astronomy and Astrophysic

    Modeling of the hydrogen Lyman lines in solar flares

    Get PDF
    The hydrogen Lyman lines (91.2 nm < λ < 121.6 nm) are significant contributors to the radiative losses of the solar chromosphere, and they are enhanced during flares. We have shown previously that the Lyman lines observed by the Extreme Ultraviolet Variability instrument onboard the Solar Dynamics Observatory exhibit Doppler motions equivalent to speeds on the order of 30 km s−1. However, contrary to expectations, both redshifts and blueshifts were present and no dominant flow direction was observed. To understand the formation of the Lyman lines, particularly their Doppler motions, we have used the radiative hydrodynamic code, RADYN, along with the radiative transfer code, RH, to simulate the evolution of the flaring chromosphere and the response of the Lyman lines during solar flares. We find that upflows in the simulated atmospheres lead to blueshifts in the line cores, which exhibit central reversals. We then model the effects of the instrument on the profiles, using the Extreme Ultraviolet Variability Experiment (EVE) instrument's properties. What may be interpreted as downflows (redshifted emission) in the lines, after they have been convolved with the instrumental line profile, may not necessarily correspond to actual downflows. Dynamic features in the atmosphere can introduce complex features in the line profiles that will not be detected by instruments with the spectral resolution of EVE, but which leave more of a signature at the resolution of the Spectral Investigation of the Coronal Environment instrument onboard the Solar Orbiter

    A Possible Mechanism for "Late Phase" in Stellar White-Light Flares

    Full text link
    M-dwarf flares observed by the \textit{Transiting Exoplanet Survey Satellite} (\textit{TESS}) sometimes exhibit a "peak-bump" light-curve morphology, characterized by a secondary, gradual peak well after the main, impulsive peak. A similar "late phase" is frequently detected in solar flares observed in the extreme-ultraviolet from longer hot coronal loops distinct from the impulsive flare structures. White-light emission has also been observed in off-limb solar flare loops. Here, we perform a suite of one-dimensional hydrodynamic loop simulations for M-dwarf flares inspired by these solar examples. Our results suggest that coronal plasma condensation following impulsive flare heating can yield high electron number density in the loop, allowing it to contribute significantly to the optical light curves via free-bound and free-free emission mechanisms. Our simulation results qualitatively agree with \textit{TESS} observations: the longer evolutionary time scale of coronal loops produces a distinct, secondary emission peak; its intensity increases with the injected flare energy. We argue that coronal plasma condensation is a possible mechanism for the \textit{TESS} late-phase flares.Comment: 31 pages, 13 figures, accepted for publication in Ap

    Simulations of the Mg II k and Ca II 8542 lines from an AlfvÉn Wave-heated Flare Chromosphere

    Get PDF
    We use radiation hydrodynamic simulations to examine two models of solar flare chromospheric heating: Alfven wave dissipation and electron beam collisional losses. Both mechanisms are capable of strong chro- ´ mospheric heating, and we show that the distinctive atmospheric evolution in the mid-to-upper chromosphere results in Mg ii k-line emission that should be observably different between wave-heated and beam-heated simulations. We also present Ca ii 8542Å profiles which are formed slightly deeper in the chromosphere. The Mg ii k-line profiles from our wave-heated simulation are quite different from those from a beam-heated model and are more consistent with IRIS observations. The predicted differences between the Ca ii 8542Å in the two models are small. We conclude that careful observational and theoretical study of lines formed in the mid-toupper chromosphere holds genuine promise for distinguishing between competing models for chromospheric heating in flares
    • …
    corecore