1,614 research outputs found
Probabilistic Description of Traffic Breakdowns
We analyze the characteristic features of traffic breakdown. To describe this
phenomenon we apply to the probabilistic model regarding the jam emergence as
the formation of a large car cluster on highway. In these terms the breakdown
occurs through the formation of a certain critical nucleus in the metastable
vehicle flow, which enables us to confine ourselves to one cluster model. We
assume that, first, the growth of the car cluster is governed by attachment of
cars to the cluster whose rate is mainly determined by the mean headway
distance between the car in the vehicle flow and, may be, also by the headway
distance in the cluster. Second, the cluster dissolution is determined by the
car escape from the cluster whose rate depends on the cluster size directly.
The latter is justified using the available experimental data for the
correlation properties of the synchronized mode. We write the appropriate
master equation converted then into the Fokker-Plank equation for the cluster
distribution function and analyze the formation of the critical car cluster due
to the climb over a certain potential barrier. The further cluster growth
irreversibly gives rise to the jam formation. Numerical estimates of the
obtained characteristics and the experimental data of the traffic breakdown are
compared. In particular, we draw a conclusion that the characteristic intrinsic
time scale of the breakdown phenomenon should be about one minute and explain
the case why the traffic volume interval inside which traffic breakdown is
observed is sufficiently wide.Comment: RevTeX 4, 14 pages, 10 figure
The cubic chessboard
We present a survey of recent results, scattered in a series of papers that
appeared during past five years, whose common denominator is the use of cubic
relations in various algebraic structures. Cubic (or ternary) relations can
represent different symmetries with respect to the permutation group S_3, or
its cyclic subgroup Z_3. Also ordinary or ternary algebras can be divided in
different classes with respect to their symmetry properties. We pay special
attention to the non-associative ternary algebra of 3-forms (or ``cubic
matrices''), and Z_3-graded matrix algebras. We also discuss the Z_3-graded
generalization of Grassmann algebras and their realization in generalized
exterior differential forms. A new type of gauge theory based on this
differential calculus is presented. Finally, a ternary generalization of
Clifford algebras is introduced, and an analog of Dirac's equation is
discussed, which can be diagonalized only after taking the cube of the
Z_3-graded generalization of Dirac's operator. A possibility of using these
ideas for the description of quark fields is suggested and discussed in the
last Section.Comment: 23 pages, dedicated to A. Trautman on the occasion of his 64th
birthda
Cellular automata approach to three-phase traffic theory
The cellular automata (CA) approach to traffic modeling is extended to allow
for spatially homogeneous steady state solutions that cover a two dimensional
region in the flow-density plane. Hence these models fulfill a basic postulate
of a three-phase traffic theory proposed by Kerner. This is achieved by a
synchronization distance, within which a vehicle always tries to adjust its
speed to the one of the vehicle in front. In the CA models presented, the
modelling of the free and safe speeds, the slow-to-start rules as well as some
contributions to noise are based on the ideas of the Nagel-Schreckenberg type
modelling. It is shown that the proposed CA models can be very transparent and
still reproduce the two main types of congested patterns (the general pattern
and the synchronized flow pattern) as well as their dependence on the flows
near an on-ramp, in qualitative agreement with the recently developed continuum
version of the three-phase traffic theory [B. S. Kerner and S. L. Klenov. 2002.
J. Phys. A: Math. Gen. 35, L31]. These features are qualitatively different
than in previously considered CA traffic models. The probability of the
breakdown phenomenon (i.e., of the phase transition from free flow to
synchronized flow) as function of the flow rate to the on-ramp and of the flow
rate on the road upstream of the on-ramp is investigated. The capacity drops at
the on-ramp which occur due to the formation of different congested patterns
are calculated.Comment: 55 pages, 24 figure
Microscopic features of moving traffic jams
Empirical and numerical microscopic features of moving traffic jams are
presented. Based on a single vehicle data analysis, it is found that within
wide moving jams, i.e., between the upstream and downstream jam fronts there is
a complex microscopic spatiotemporal structure. This jam structure consists of
alternations of regions in which traffic flow is interrupted and flow states of
low speeds associated with "moving blanks" within the jam. Empirical features
of the moving blanks are found. Based on microscopic models in the context of
three-phase traffic theory, physical reasons for moving blanks emergence within
wide moving jams are disclosed. Structure of moving jam fronts is studied based
in microscopic traffic simulations. Non-linear effects associated with moving
jam propagation are numerically investigated and compared with empirical
results.Comment: 19 pages, 12 figure
Stability Analysis of Optimal Velocity Model for Traffic and Granular Flow under Open Boundary Condition
We analyzed the stability of the uniform flow solution in the optimal
velocity model for traffic and granular flow under the open boundary condition.
It was demonstrated that, even within the linearly unstable region, there is a
parameter region where the uniform solution is stable against a localized
perturbation. We also found an oscillatory solution in the linearly unstable
region and its period is not commensurate with the periodicity of the car index
space. The oscillatory solution has some features in common with the
synchronized flow observed in real traffic.Comment: 4 pages, 6 figures. Typos removed. To appear in J. Phys. Soc. Jp
Interpreting the Wide Scattering of Synchronized Traffic Data by Time Gap Statistics
Based on the statistical evaluation of experimental single-vehicle data, we
propose a quantitative interpretation of the erratic scattering of flow-density
data in synchronized traffic flows. A correlation analysis suggests that the
dynamical flow-density data are well compatible with the so-called jam line
characterizing fully developed traffic jams, if one takes into account the
variation of their propagation speed due to the large variation of the netto
time gaps (the inhomogeneity of traffic flow). The form of the time gap
distribution depends not only on the density, but also on the measurement cross
section: The most probable netto time gap in congested traffic flow upstream of
a bottleneck is significantly increased compared to uncongested freeway
sections. Moreover, we identify different power-law scaling laws for the
relative variance of netto time gaps as a function of the sampling size. While
the exponent is -1 in free traffic corresponding to statistically independent
time gaps, the exponent is about -2/3 in congested traffic flow because of
correlations between queued vehicles.Comment: For related publications see http://www.helbing.or
Topics in Born-Infeld Electrodynamics
Classical version of Born-Infeld electrodynamics is recalled and its most
important properties discussed. Then we analyze possible abelian and
non-abelian generalizations of this theory, and show how certain soliton-like
configurations can be obtained. The relationship with the Standard Model of
electroweak interactions is also mentioned.Comment: (One new reference added). 15 pages, LaTeX. To be published in the
Proceedings of XXXVII Karpacz Winter School edited in the Proceedings Series
of American Mathematical Society, editors J. Lukierski and J. Rembielinsk
Phase diagram of congested traffic flow: an empirical study
We analyze traffic data from a highway section containing one effective
on-ramp. Based on two criteria, local velocity variation patterns and expansion
(or nonexpansion) of congested regions, three distinct congested traffic states
are identified. These states appear at different levels of the upstream flux
and the on-ramp flux, thereby generating a phase diagram of the congested
traffic flow. Compared to our earliear reports (including cond-mat/9905292)
based on 14 day traffic data, the present paper uses a much larger data set
(107 days) and the analysis is carried in a more systematic way, which leads to
the modification of a part of interpretation in the earlier reports. Observed
traffic states are compared with recent theoretical analyses and both agreeing
and disagreeing features are found.Comment: More extensive and systematic version of earlier reports (including
cond-mat/9905292). A part of interpretation in earlier reports is modified. 6
two-column pages. To appear in Phys. Rev. E (tentatively scheduled for Oct. 1
issue
- …