19 research outputs found

    The matrix metalloproteinase 9 (mmp-9) hemopexin domain is a novel gelatin binding domain and acts as an antagonist

    No full text
    Matrix metalloproteinases (MMPs) are involved in the remodeling processes of the extracellular matrix and the basement membrane. Most MMPs are composed of a regulatory, a catalytic, and a hemopexin subunit. In many tumors the expression of MMP-9 correlates with local tumor growth, invasion, and metastasis. To analyze the role of the hemopexin domain in these processes, the MMP-9 hemopexin domain (MMP-9-PEX) was expressed as a glutathione S-transferase fusion protein in Escherichia coli. After proteolytic cleavage, the isolated PEX domain was purified by size exclusion chromatography. In a zymography assay, MMP-9-PEX was able to inhibit MMP-9 activity. The association and dissociation rates for the interaction of MMP-9-PEX with gelatin were determined by plasmon resonance. From the measured rate constants, the dissociation constant was calculated to be K(d) = 2,4 x 10(-8) m, demonstrating a high affinity between MMP-9-PEX and gelatin. In Boyden chamber experiments the recombinant MMP-9-PEX was able to inhibit the invasion of melanoma cells secreting high amounts of MMP-9 in a dose-dependent manner. These data demonstrate for the first time that the hemopexin domain of MMP-9 has a high affinity binding site for gelatin, and the particular recombinant domain is able to block MMP-9 activity and tumor cell invasion. Because MMP-9 plays an important role in metastasis, this antagonistic effect may be utilized to design MMP inhibition-based cancer therapy

    Signal transducer gp130: biochemical characterization of the three membrane-proximal extracellular domains and evaluation of their oligomerization potential.

    No full text
    Glycoprotein 130 (gp130) is a type I transmembrane protein and serves as the common signal-transducing receptor subunit of the interleukin-6-type cytokines. Whereas the membrane-distal half of the gp130 extracellular part confers ligand binding and has been subject to intense investigation, the structural and functional features of its membrane-proximal half are poorly understood. On the basis of predictions of tertiary structure, the membrane-proximal part consists of three fibronectin-type-III-like domains D4, D5 and D6. Here we describe the bacterial expression of the polypeptides predicted to comprise each of these three domains. The recombinant proteins were refolded from solubilized inclusion bodies in vitro, purified to homogeneity and characterized by means of size-exclusion chromatography and CD spectroscopy. For the first time the prediction of three individual membrane-proximal protein domains for gp130 has been verified experimentally. The three domains do not show intermediate-affinity or high-affinity interactions between each other. Mapping of a neutralizing gp130 monoclonal antibody against D4 suggested a particular functional role of this domain for gp130 activation, because above that an intrinsic tendency for low-affinity oligomerization was demonstrated for D4
    corecore