9 research outputs found
Apolipoprotein A-I proteolysis in aortic valve stenosis: role of cathepsin S
Aortic valve stenosis (AVS) is the most common valvular heart disease in the Western world. Therapy based on apolipoprotein A-I (apoA-I), the major protein component of high-density lipoproteins, results in AVS regression in experimental models. Nevertheless, apoA-I degradation by proteases might lead to suboptimal efficacy of such therapy. An activatable probe using a quenched fluorescently labeled full-length apoA-I protein was generated to assess apoA-I-degrading protease activity in plasma derived from 44 men and 20 women with severe AVS (age 65.0 ± 10.4 years) as well as from a rabbit model of AVS. In human and rabbit AVS plasma, apoA-I-degrading protease activity was significantly higher than in controls (humans: 0.038 ± 0.009 vs 0.022 ± 0.005 RFU/s, p < 0.0001; rabbits: 0.033 ± 0.016 vs 0.017 ± 0.005 RFU/s, p = 0.041). Through the use of protease inhibitors, we identified metalloproteinases (MMP) as exerting the most potent proteolytic effect on apoA-I in AVS rabbits (67%, p < 0.05 vs control), while the cysteine protease cathepsin S accounted for 54.2% of apoA-I degradation in human plasma (p < 0.05 vs control) with the maximum effect seen in women (68.8%, p < 0.05 vs men). Accordingly, cathepsin S activity correlated significantly with mean transaortic pressure gradient in women (r = 0.5, p = 0.04) but not in men (r = - 0.09, p = 0.60), and was a significant independent predictor of disease severity in women (standardized beta coefficient 0.832, p < 0.001) when tested in a linear regression analysis. ApoA-I proteolysis is increased in AVS. Targeting circulating cathepsin S may lead to new therapies for human aortic valve disease
Beneficial Effects of High-Density Lipoproteins on Acquired von Willebrand Syndrome in Aortic Valve Stenosis
BACKGROUND Infusions of apolipoprotein A-I (apoA-I), the major protein component of high-density lipoproteins (HDL), result in aortic valve stenosis (AVS) regression in experimental models. Severe AVS can be complicated by acquired von Willebrand syndrome, a haemorrhagic disorder associated with loss of high-molecular-weight von Willebrand factor (vWF) multimers (HMWM), the latter being a consequence of increased shear stress and enhanced vWF-cleaving protease (ADAMTS-13) activity. Although antithrombotic actions of HDL have been described, its effects on ADAMTS-13 and vWF in AVS are unknown.
METHODS AND RESULTS We assessed ADAMTS-13 activity in plasma derived from a rabbit model of AVS ( = 29) as well as in plasma collected from 64 patients with severe AVS (age 65.0 ± 10.4 years, 44 males) undergoing aortic valve replacement (AVR). In both human and rabbit AVS plasma, ADAMTS-13 activity was higher than that in controls ( < 0.05). Accordingly, AVS patients had less HMWM than controls (66.3 ± 27.2% vs. 97.2 ± 24.1%,  < 0.0001). Both ADAMTS-13 activity and HMWM correlated significantly with aortic transvalvular gradients, thereby showing opposing correlations ( = 0.3,  = 0.018 and  = -0.4,  = 0.003, respectively). Administration of an apoA-I mimetic peptide reduced ADAMTS-13 activity in AVS rabbits as compared with the placebo group (2.0 ± 0.5 RFU/sec vs. 3.8 ± 0.4 RFU/sec,  < 0.05). Similarly, a negative correlation was found between ADAMTS-13 activity and HDL cholesterol levels in patients with AVS ( = -0.3,  = 0.045).
CONCLUSION Our data indicate that HDL levels are associated with reduced ADAMTS-13 activity and increased HMWM. HDL-based therapies may reduce the haematologic abnormalities of the acquired von Willebrand syndrome in AVS