2,909 research outputs found

    Controlling quantum systems by embedded dynamical decoupling schemes

    Full text link
    A dynamical decoupling method is presented which is based on embedding a deterministic decoupling scheme into a stochastic one. This way it is possible to combine the advantages of both methods and to increase the suppression of undesired perturbations of quantum systems significantly even for long interaction times. As a first application the stabilization of a quantum memory is discussed which is perturbed by one-and two-qubit interactions

    Structural phase transitions of vortex matter in an optical lattice

    Full text link
    We consider the vortex structure of a rapidly rotating trapped atomic Bose-Einstein condensate in the presence of a co-rotating periodic optical lattice potential. We observe a rich variety of structural phases which reflect the interplay of the vortex-vortex and vortex-lattice interactions. The lattice structure is very sensitive to the ratio of vortices to pinning sites and we observe structural phase transitions and domain formation as this ratio is varied.Comment: 4 pages, 3 figure

    An experimental testbed for NEAT to demonstrate micro-pixel accuracy

    Full text link
    NEAT is an astrometric mission proposed to ESA with the objectives of detecting Earth-like exoplanets in the habitable zone of nearby solar-type stars. In NEAT, one fundamental aspect is the capability to measure stellar centroids at the precision of 5e-6 pixel. Current state-of-the-art methods for centroid estimation have reached a precision of about 4e-5 pixel at Nyquist sampling. Simulations showed that a precision of 2 micro-pixels can be reached, if intra and inter pixel quantum efficiency variations are calibrated and corrected for by a metrology system. The European part of the NEAT consortium is designing and building a testbed in vacuum in order to achieve 5e-6 pixel precision for the centroid estimation. The goal is to provide a proof of concept for the precision requirement of the NEAT spacecraft. In this paper we give the basic relations and trade-offs that come into play for the design of a centroid testbed and its metrology system. We detail the different conditions necessary to reach the targeted precision, present the characteristics of our current design and describe the present status of the demonstration.Comment: SPIE proceeding

    Magnetic Susceptibility of Multiorbital Systems

    Full text link
    Effects of orbital degeneracy on magnetic susceptibility in paramagnetic phases are investigated within a mean-field theory. Under certain crystalline electric fields, the magnetic moment consists of two independent moments, e.g., spin and orbital moments. In such a case, the magnetic susceptibility is given by the sum of two different Curie-Weiss relations, leading to deviation from the Curie-Weiss law. Such behavior may be observed in d- and f-electron systems with t_{2g} and Gamma_8 ground states, respectively. As a potential application of our theory, we attempt to explain the difference in the temperature dependence of magnetic susceptibilities of UO_2 and NpO_2.Comment: 4 pages, 3 figure

    Multipole Ordering and Fluctuations in f-Electron Systems

    Full text link
    We investigate effects of multipole moments in f-electron systems both from phenomenological and microscopic viewpoints. First, we discuss significant effects of octupole moment on the magnetic susceptibility in a paramagnetic phase. It is found that even within mean-field approximation, the magnetic susceptibility deviates from the Curie-Weiss law due to interactions between dipole and octupole moments. Next, we proceed to a microscopic theory for multipole ordering on the basis of a j-j coupling scheme. After brief explanation of a method to derive multipole interactions from the ff-electron model, we discuss several multipole ordered phases depending on lattice structure. Finally, we show our new development of the microscopic approach to the evaluation of multipole response functions. We apply fluctuation exchange approximation to the f-electron model, and evaluate multipole response functions.Comment: 7 pages, 4 figures, Proceedings of ASR-WYP-200

    In-plane magnetic anisotropy of Fe atoms on Bi2_2Se3_3(111)

    Full text link
    The robustness of the gapless topological surface state hosted by a 3D topological insulator against perturbations of magnetic origin has been the focus of recent investigations. We present a comprehensive study of the magnetic properties of Fe impurities on a prototypical 3D topological insulator Bi2_2Se3_3 using local low temperature scanning tunneling microscopy and integral x-ray magnetic circular dichroism techniques. Single Fe adatoms on the Bi2_2Se3_3 surface, in the coverage range ≈1\approx 1% are heavily relaxed into the surface and exhibit a magnetic easy axis within the surface-plane, contrary to what was assumed in recent investigations on the opening of a gap. Using \textit{ab initio} approaches, we demonstrate that an in-plane easy axis arises from the combination of the crystal field and dynamic hybridization effects.Comment: 5 pages, 3 figures, typos correcte

    First experimental results of very high accuracy centroiding measurements for the neat astrometric mission

    Full text link
    NEAT is an astrometric mission proposed to ESA with the objectives of detecting Earth-like exoplanets in the habitable zone of nearby solar-type stars. NEAT requires the capability to measure stellar centroids at the precision of 5e-6 pixel. Current state-of-the-art methods for centroid estimation have reached a precision of about 2e-5 pixel at two times Nyquist sampling, this was shown at the JPL by the VESTA experiment. A metrology system was used to calibrate intra and inter pixel quantum efficiency variations in order to correct pixelation errors. The European part of the NEAT consortium is building a testbed in vacuum in order to achieve 5e-6 pixel precision for the centroid estimation. The goal is to provide a proof of concept for the precision requirement of the NEAT spacecraft. In this paper we present the metrology and the pseudo stellar sources sub-systems, we present a performance model and an error budget of the experiment and we report the present status of the demonstration. Finally we also present our first results: the experiment had its first light in July 2013 and a first set of data was taken in air. The analysis of this first set of data showed that we can already measure the pixel positions with an accuracy of about 1e-4 pixel.Comment: SPIE conference proceeding
    • …
    corecore