641 research outputs found
Statistical features of the thermal neutron capture cross sections
We discuss the existence of huge thermal neutron capture cross sections in
several nuclei. The values of the cross sections are several orders of
magnitude bigger than expected at these very low energies. We lend support to
the idea that this phenomenon is random in nature and is similar to what we
have learned from the study of parity violation in the actinide region. The
idea of statistical doorways is advanced as a unified concept in the
delineation of large numbers in the nuclear world. The average number of maxima
per unit mass, in the capture cross section is calculated and related
to the underlying cross section correlation function and found to be , where is a characteristic mass
correlation width which designates the degree of remnant coherence in the
system. We trace this coherence to nucleosynthesis which produced the nuclei
whose neutron capture cross sections are considered here.Comment: 7 pages, 6 figures. To appear in Acta Physica Polonica B as a
Contribution to the proceedings of:Jagiellonian Symposium of Fundamental and
Applied Subatomic Physics, June 7- 12, 2015 Krakow, Polan
Fine Structure Discussion of Parity-Nonconserving Neutron Scattering at Epithermal Energies
The large magnitude and the sign correlation effect in the parity
non-conserving resonant scattering of epithermal neutrons from Th is
discussed in terms of a non-collective local doorway model. General
conclusions are drawn as to the probability of finding large parity violation
effects in other regions of the periodic table.Comment: 6 pages, Tex. CTP# 2296, to appear in Z. Phys.
Kinetic-inductance-limited reset time of superconducting nanowire photon counters
We investigate the recovery of superconducting NbN-nanowire photon counters
after detection of an optical pulse at a wavelength of 1550 nm, and present a
model that quantitatively accounts for our observations. The reset time is
found to be limited by the large kinetic inductance of these nanowires, which
forces a tradeoff between counting rate and either detection efficiency or
active area. Devices of usable size and high detection efficiency are found to
have reset times orders of magnitude longer than their intrinsic photoresponse
time.Comment: Submitted to Applied Physics Letter
Coherency in Neutrino-Nucleus Elastic Scattering
Neutrino-nucleus elastic scattering provides a unique laboratory to study the
quantum mechanical coherency effects in electroweak interactions, towards which
several experimental programs are being actively pursued. We report results of
our quantitative studies on the transitions towards decoherency. A parameter
() is identified to describe the degree of coherency, and its
variations with incoming neutrino energy, detector threshold and target nucleus
are studied. The ranges of which can be probed with realistic neutrino
experiments are derived, indicating complementarity between projects with
different sources and targets. Uncertainties in nuclear physics and in
would constrain sensitivities in probing physics beyond the standard model. The
maximum neutrino energies corresponding to >0.95 are derived.Comment: 5 pages, 4 figures, 3 tables. V2 -- Published Versio
Pairing of Parafermions of Order 2: Seniority Model
As generalizations of the fermion seniority model, four multi-mode
Hamiltonians are considered to investigate some of the consequences of the
pairing of parafermions of order two. 2-particle and 4-particle states are
explicitly constructed for H_A = - G A^+ A with A^+}= 1/2 Sum c_{m}^+ c_{-m}^+
and the distinct H_C = - G C^+ C with C^+}= 1/2 Sum c_{-m}^+ c_{m}^+, and for
the time-reversal invariant H_(-)= -G (A^+ - C^+)(A-C) and H_(+) = -G
(A^+dagger + C^+)(A+C), which has no analogue in the fermion case. The spectra
and degeneracies are compared with those of the usual fermion seniority model.Comment: 18 pages, no figures, no macro
Deformations of the fermion realization of the sp(4) algebra and its subalgebras
With a view towards future applications in nuclear physics, the fermion
realization of the compact symplectic sp(4) algebra and its q-deformed versions
are investigated. Three important reduction chains of the sp(4) algebra are
explored in both the classical and deformed cases. The deformed realizations
are based on distinct deformations of the fermion creation and annihilation
operators. For the primary reduction, the su(2) sub-structure can be
interpreted as either the spin, isospin or angular momentum algebra, whereas
for the other two reductions su(2) can be associated with pairing between
fermions of the same type or pairing between two distinct fermion types. Each
reduction provides for a complete classification of the basis states. The
deformed induced u(2) representations are reducible in the action spaces of
sp(4) and are decomposed into irreducible representations.Comment: 28 pages, LaTeX 12pt article styl
Constraints on scalar-pseudoscalar and tensorial nonstandard interactions and tensorial unparticle couplings from neutrino-electron scattering
Neutrino-electron scattering is a purely leptonic fundamental interaction and therefore provides an important channel to test the Standard Model, especially at the low energy-momentum transfer regime. We derived constraints on neutrino nonstardard interaction couplings depending on model-independent approaches which are described by a four-Fermi pointlike interaction and the unparticle physics model with tensorial components. Data on (nu) over bar (e) - e and nu(e) - e scattering from the TEXONO and LSND experiments, respectively, are used. The upper limits and the allowed regions of scalar, pseudoscalar, and tensorial nonstandard interaction couplings of neutrinos are derived at 90% confidence level in both one-parameter and two-parameter analysis. New upper limits for tensorial unparticle physics coupling constants and mass parameters are also placed
A superconducting-nanowire 3-terminal electronic device
In existing superconducting electronic systems, Josephson junctions play a
central role in processing and transmitting small-amplitude electrical signals.
However, Josephson-junction-based devices have a number of limitations
including: (1) sensitivity to magnetic fields, (2) limited gain, (3) inability
to drive large impedances, and (4) difficulty in controlling the junction
critical current (which depends sensitively on sub-Angstrom-scale thickness
variation of the tunneling barrier). Here we present a nanowire-based
superconducting electronic device, which we call the nanocryotron (nTron), that
does not rely on Josephson junctions and can be patterned from a single thin
film of superconducting material with conventional electron-beam lithography.
The nTron is a 3-terminal, T-shaped planar device with a gain of ~20 that is
capable of driving impedances of more than 100 k{\Omega}, and operates in
typical ambient magnetic fields at temperatures of 4.2K. The device uses a
localized, Joule-heated hotspot formed in the gate to modulate current flow in
a perpendicular superconducting channel. We have characterized the nTron,
matched it to a theoretical framework, and applied it both as a digital logic
element in a half-adder circuit, and as a digital amplifier for superconducting
nanowire single-photon detectors pulses. The nTron has immediate applications
in classical and quantum communications, photon sensing and astronomy, and its
performance characteristics make it compatible with existing superconducting
technologies. Furthermore, because the hotspot effect occurs in all known
superconductors, we expect the design to be extensible to other materials,
providing a path to digital logic, switching, and amplification in
high-temperature superconductors
Evanescent-wave trapping and evaporative cooling of an atomic gas near two-dimensionality
A dense gas of cesium atoms at the crossover to two-dimensionality is
prepared in a highly anisotropic surface trap that is realized with two
evanescent light waves. Temperatures as low as 100nK are reached with 20.000
atoms at a phase-space density close to 0.1. The lowest quantum state in the
tightly confined direction is populated by more than 60%. The system offers
intriguing prospects for future experiments on degenerate quantum gases in two
dimensions
- âŠ