7 research outputs found

    Multi-agent systems in epidemiology: a first step for computational biology in the study of vector-borne disease transmission

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computational biology is often associated with genetic or genomic studies only. However, thanks to the increase of computational resources, computational models are appreciated as useful tools in many other scientific fields. Such modeling systems are particularly relevant for the study of complex systems, like the epidemiology of emerging infectious diseases. So far, mathematical models remain the main tool for the epidemiological and ecological analysis of infectious diseases, with SIR models could be seen as an implicit standard in epidemiology. Unfortunately, these models are based on differential equations and, therefore, can become very rapidly unmanageable due to the too many parameters which need to be taken into consideration. For instance, in the case of zoonotic and vector-borne diseases in wildlife many different potential host species could be involved in the life-cycle of disease transmission, and SIR models might not be the most suitable tool to truly capture the overall disease circulation within that environment. This limitation underlines the necessity to develop a standard spatial model that can cope with the transmission of disease in realistic ecosystems.</p> <p>Results</p> <p>Computational biology may prove to be flexible enough to take into account the natural complexity observed in both natural and man-made ecosystems. In this paper, we propose a new computational model to study the transmission of infectious diseases in a spatially explicit context. We developed a multi-agent system model for vector-borne disease transmission in a realistic spatial environment.</p> <p>Conclusion</p> <p>Here we describe in detail the general behavior of this model that we hope will become a standard reference for the study of vector-borne disease transmission in wildlife. To conclude, we show how this simple model could be easily adapted and modified to be used as a common framework for further research developments in this field.</p

    An Agent-Based Model to study the epidemiological and evolutionary dynamics of Influenza viruses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Influenza A viruses exhibit complex epidemiological patterns in a number of mammalian and avian hosts. Understanding transmission of these viruses necessitates taking into account their evolution, which represents a challenge for developing mathematical models. This is because the phrasing of multi-strain systems in terms of traditional compartmental ODE models either requires simplifying assumptions to be made that overlook important evolutionary processes, or leads to complex dynamical systems that are too cumbersome to analyse.</p> <p>Results</p> <p>Here, we develop an Individual-Based Model (IBM) in order to address simultaneously the ecology, epidemiology and evolution of strain-polymorphic pathogens, using Influenza A viruses as an illustrative example.</p> <p>Conclusions</p> <p>We carry out careful validation of our IBM against comparable mathematical models to demonstrate the robustness of our algorithm and the sound basis for this novel framework. We discuss how this new approach can give critical insights in the study of influenza evolution.</p

    Aerobic and Anaerobic Reactions of Inorganic Substances

    No full text
    corecore