24 research outputs found

    Rhegmatogenous retinal detachment in uveitis

    Get PDF
    Abstract Background Retinal detachment is more common among uveitis patients than in the general population. Here, we aimed to assess the prevalence of rhegmatogenous retinal detachment (RRD) in a uveitis population. Methods We retrospectively studied 851 uveitis patients, recording characteristics such as uveitis duration, anatomical location, and cause; RRD occurrence; proliferative vitreoretinopathy (PVR) at presentation; surgical approach; reattachment rate; and initial and final visual acuity (VA). Results RRD occurred in 26 patients (3.1%; 29 affected eyes) and was significantly associated with posterior uveitis (p < 0.001), infectious uveitis (p < 0.001), and male gender (p = 0.012). Among cases of infectious uveitis, cytomegalovirus and varicella zoster virus were most commonly associated with RRD development. RRD in non-infectious uveitis was not found to be associated with any specific uveitis entity. The rate of single-operation reattachment was 48%, and the rate of final reattachment was 83%. Mean final VA was 20/125, with 41% of eyes ultimately having a VA of less than 20/200. Conclusion Uveitis is a risk factor for RRD development, which carries a poor prognosis

    Run-Off Replication of Host-Adaptability Genes Is Associated with Gene Transfer Agents in the Genome of Mouse-Infecting Bartonella grahamii

    Get PDF
    The genus Bartonella comprises facultative intracellular bacteria adapted to mammals, including previously recognized and emerging human pathogens. We report the 2,341,328 bp genome sequence of Bartonella grahamii, one of the most prevalent Bartonella species in wild rodents. Comparative genomics revealed that rodent-associated Bartonella species have higher copy numbers of genes for putative host-adaptability factors than the related human-specific pathogens. Many of these gene clusters are located in a highly dynamic region of 461 kb. Using hybridization to a microarray designed for the B. grahamii genome, we observed a massive, putatively phage-derived run-off replication of this region. We also identified a novel gene transfer agent, which packages the bacterial genome, with an over-representation of the amplified DNA, in 14 kb pieces. This is the first observation associating the products of run-off replication with a gene transfer agent. Because of the high concentration of gene clusters for host-adaptation proteins in the amplified region, and since the genes encoding the gene transfer agent and the phage origin are well conserved in Bartonella, we hypothesize that these systems are driven by selection. We propose that the coupling of run-off replication with gene transfer agents promotes diversification and rapid spread of host-adaptability factors, facilitating host shifts in Bartonella

    Bartonella

    No full text
    corecore