2 research outputs found

    Adaptive objective configuration in bi-objective evolutionary optimization for cervical cancer brachytherapy treatment planning

    Get PDF
    The Multi-Objective Real-Valued Gene-pool Optimal Mixing Evolutionary Algorithm (MO-RV-GOMEA) has been proven effective and eficient in solving real-world problems. A prime example is optimizing treatment plans for prostate cancer brachytherapy, an internal form of radiation treatment, for which equally important clinical aims from a base protocol are grouped into two objectives and bi-objectively optimized. This use of MO-RV-GOMEA was recently successfully introduced into clinical practice. Brachytherapy can also play an important role in treating cervical cancer. However, using the same approach to optimize treatment plans often does not immediately lead to clinically desirable results. Concordantly, medical experts indicate that they use additional aims beyond the cervix base protocol. Moreover, these aims have different priorities and can be patient-specifically adjusted. For this reason, we propose a novel adaptive objective configuration method to use with MO-RV-GOMEA so that we can accommodate additional aims of this nature. Based on results using only the base protocol, in consultation with medical experts, we configured key additional aims. We show how, for 10 patient cases, the new approach achieves the intended result, properly taking into account the additional aims. Consequently, plans resulting from the new approach are preferred by medical specialists in 8/10 cases

    Keeping your best options open with AI-based treatment planning in prostate and cervix brachytherapy

    Get PDF
    PURPOSE: Without a clear definition of an optimal treatment plan, no optimization model can be perfect. Therefore, instead of automatically finding a single “optimal” plan, finding multiple, yet different near-optimal plans, can be an insightful approach to support radiation oncologists in finding the plan they are looking for. METHODS AND MATERIALS: BRIGHT is a flexible AI-based optimization method for brachytherapy treatment planning that has already been shown capable of finding high-quality plans that trade-off target volume coverage and healthy tissue sparing. We leverage the flexibility of BRIGHT to find plans with similar dose-volume criteria, yet different dose distributions. We further describe extensions that facilitate fast plan adaptation should planning aims need to be adjusted, and straightforwardly allow incorporating hospital-specific aims besides standard protocols. RESULTS: Results are obtained for prostate (n = 12) and cervix brachytherapy (n = 36). We demonstrate the possible differences in dose distribution for optimized plans with equal dose-volume criteria. We furthermore demonstrate that adding hospital-specific aims enables adhering to hospital-specific practice while still being able to automatically create cervix plans that more often satisfy the EMBRACE-II protocol than clinical practice. Finally, we illustrate the feasibility of fast plan adaptation. CONCLUSIONS: Methods such as BRIGHT enable new ways to construct high-quality treatment plans for brachytherapy while offering new insights by making explicit the options one has. In particular, it becomes possible to present to radiation oncologists a manageable set of alternative plans that, from an optimization perspective are equally good, yet differ in terms of coverage-sparing trade-offs and shape of the dose distribution
    corecore