488 research outputs found

    Latest results from the POINT-AGAPE pixel-lensing survey of the Andromeda Galaxy

    Full text link
    I report on recent results from the POINT-AGAPE pixel-lensing experiment, which is engaged in a search towards the Andromeda galaxy (M31) for gravitational microlensing signatures from massive compact halo objects (Machos). An analysis of two years of data reveals over 360 light-curves compatible with microlensing. The third year of data, currently being analysed, will be crucial in determining how many of these candidates are long-period variables rather than microlensing. Within the dataset we have isolated a subset of four high signal-to-noise ratio, short duration events which are compelling microlensing candidates. The properties and possible origins of these events are discussed.Comment: 6 pages, 4 figures. Proceedings contribution for the 4th International Workshop on "The Identification of Dark Matter", York, September 2nd - 6th 200

    Difference image photometry with bright variable backgrounds

    Full text link
    Over the last two decades the Andromeda Galaxy (M31) has been something of a test-bed for methods aimed at obtaining accurate time-domain relative photometry within highly crowded fields. Difference imaging methods, originally pioneered towards M31, have evolved into sophisticated methods, such as the Optimal Image Subtraction (OIS) method of Alard & Lupton (1998), that today are most widely used to survey variable stars, transients and microlensing events in our own Galaxy. We show that modern difference image (DIA) algorithms such as OIS, whilst spectacularly successful towards the Milky Way bulge, may perform badly towards high surface brightness targets such as the M31 bulge. Poor results can occur in the presence of common systematics which add spurious flux contributions to images, such as internal reflections, scattered light or fringing. Using data from the Angstrom Project microlensing survey of the M31 bulge, we show that very good results are usually obtainable by first performing careful photometric alignment prior to using OIS to perform point-spread function (PSF) matching. This separation of background matching and PSF matching, a common feature of earlier M31 photometry techniques, allows us to take full advantage of the powerful PSF matching flexibility offered by OIS towards high surface brightness targets. We find that difference images produced this way have noise distributions close to Gaussian, showing significant improvement upon results achieved using OIS alone. We show that with this correction light-curves of variable stars and transients can be recovered to within ~10 arcseconds of the M31 nucleus. Our method is simple to implement and is quick enough to be incorporated within real-time DIA pipelines. (Abridged)Comment: 12 pages. Accepted for publication in MNRAS. Includes an expanded discussion of DIA testing and results, including additional lightcurve example

    Analysis of a Hubble Space Telescope Search for Red Dwarfs: Limits on Baryonic Matter in the Galactic Halo

    Full text link
    We re-examine a deep {\it Hubble Space Telescope} pencil-beam search for red dwarfs, stars just massive enough to burn Hydrogen. The authors of this search (Bahcall, Flynn, Gould \& Kirhakos 1994) found that red dwarfs make up less than 6\% of the galactic halo. First, we extrapolate this result to include brown dwarfs, stars not quite massive enough to burn hydrogen; we assume a 1/M1/{\cal M} mass function. Then the total mass of red dwarfs and brown dwarfs is ≤\leq18\% of the halo. This result is consistent with microlensing results assuming a popular halo model. However, using new stellar models and parallax observations of low mass, low metallicity stars, we obtain much tighter bounds on low mass stars. We find the halo red dwarf density to be <1%<1\% of the halo, while our best estimate of this value is 0.14-0.37\%. Thus our estimate of the halo mass density of red dwarfs drops to 16-40 times less than the reported result of Bahcall et al (1994). For a 1/M1/{\cal M} mass function, this suggests a total density of red dwarfs and brown dwarfs of ∼\sim0.25-0.67\% of the halo, \ie , (0.9-2.5)\times 10^9\msun out to 50 kpc. Such a low result would conflict with microlensing estimates by the \macho\ group (Alcock \etal 1995a,b).Comment: 13 pages, 2 figures. Figure one only available via fax or snail-mail To be published in ApJL. fig. 2 now available in postscript. Some minor changes in dealing with disk forground. Some cosmetic changes. Updated reference

    Exoplanetary atmosphere target selection in the era of comparative planetology

    Full text link
    The large number of new planets expected from wide-area transit surveys means that follow-up transmission spectroscopy studies of their atmospheres will be limited by the availability of telescope assets. We argue that telescopes covering a broad range of apertures will be required, with even 1m-class instruments providing a potentially important contribution. Survey strategies that employ automated target selection will enable robust population studies. As part of such a strategy, we propose a decision metric to pair the best target to the most suitable telescope, and demonstrate its effectiveness even when only primary transit observables are available. Transmission spectroscopy target selection need not therefore be impeded by the bottle-neck of requiring prior follow-up observations to determine the planet mass. The decision metric can be easily deployed within a distributed heterogeneous network of telescopes equipped to undertake either broadband photometry or spectroscopy. We show how the metric can be used either to optimise the observing strategy for a given telescope (e.g. choice of filter) or to enable the selection of the best telescope to optimise the overall sample size. Our decision metric can also provide the basis for a selection function to help evaluate the statistical completeness of follow-up transmission spectroscopy datasets. Finally, we validate our metric by comparing its ranked set of targets against lists of planets that have had their atmospheres successfully probed, and against some existing prioritised exoplanet lists.Comment: 20 pages, 16 figures, 3 tables. Revision 3, accepted by MNRAS. Improvements include always using planetary masses where available and reliable, treatment for sky backgrounds and out-of-transit noise and a use case for defocused photometr

    The POINT-AGAPE Survey: Comparing Automated Searches of Microlensing Events toward M31

    Full text link
    Searching for microlensing in M31 using automated superpixel surveys raises a number of difficulties which are not present in more conventional techniques. Here we focus on the problem that the list of microlensing candidates is sensitive to the selection criteria or "cuts" imposed and some subjectivity is involved in this. Weakening the cuts will generate a longer list of microlensing candidates but with a greater fraction of spurious ones; strengthening the cuts will produce a shorter list but may exclude some genuine events. We illustrate this by comparing three analyses of the same data-set obtained from a 3-year observing run on the INT in La Palma. The results of two of these analyses have been already reported: Belokurov et al. (2005) obtained between 3 and 22 candidates, depending on the strength of their cuts, while Calchi Novati et al. (2005) obtained 6 candidates. The third analysis is presented here for the first time and reports 10 microlensing candidates, 7 of which are new. Only two of the candidates are common to all three analyses. In order to understand why these analyses produce different candidate lists, a comparison is made of the cuts used by the three groups...Comment: 28 pages, 24 figures, 9 table
    • …
    corecore