124 research outputs found
A hybrid shifting bottleneck-tabu search heuristic for the job shop total weighted tardiness problem
In this paper, we study the job shop scheduling problem with the objective of minimizing the total weighted tardiness. We propose a hybrid shifting bottleneck - tabu search (SB-TS) algorithm by replacing the reoptimization step in the shifting bottleneck (SB) algorithm by a tabu search (TS). In terms of the shifting bottleneck heuristic, the proposed tabu search optimizes the total weighted tardiness for partial schedules in which some machines are currently assumed to have infinite capacity. In the context of tabu search, the shifting bottleneck heuristic features a long-term memory which helps to diversify the local search. We exploit this synergy to develop a state-of-the-art algorithm for the job shop total weighted tardiness problem (JS-TWT). The computational
effectiveness of the algorithm is demonstrated on standard benchmark instances from the literature
A Survey On Multi Trip Vehicle Routing Problem
The vehicle routing problem (VRP) and its variants are well known and greatly explored in the transportation literature. The vehicle routing problem can be considered as the scheduling of vehicles (trucks) to a set of customers under various side constraints. In most studies, a fundamental assumption is that a vehicle dispatched for service finishes its duty in that scheduling period after it returns back to the depot. Clearly, in many cases this assumption may not hold. Thus, in the last decade some studies appeared in the literature where this basic assumption is relaxed, and it is allowed for a vehicle to make multiple trips per period. We consider this new variant of the VRP an important one with direct practical impact. In this survey, we define the vehicle routing problem with multiple trips, define the current state-of-the-art, and report existing results from the current literature
Flow shop scheduling with earliness, tardiness and intermediate inventory holding costs
We consider the problem of scheduling customer orders in a flow shop with the objective of minimizing the sum of tardiness, earliness (finished goods inventory holding) and intermediate (work-in-process) inventory holding costs. We formulate this problem as an integer program, and based on approximate solutions to two di erent, but closely related, Dantzig-Wolfe reformulations, we develop heuristics to minimize the total cost. We exploit the duality between Dantzig-Wolfe reformulation and Lagrangian relaxation to enhance our heuristics. This combined approach enables us to develop two di erent lower bounds on the optimal integer solution, together with intuitive approaches for obtaining near-optimal feasible integer solutions. To the best of our knowledge, this is the first paper that applies column generation to a scheduling problem with di erent types of strongly NP-hard pricing problems which are solved heuristically. The computational study demonstrates that our algorithms have a significant speed advantage over alternate methods, yield good lower bounds, and generate near-optimal feasible integer solutions for problem instances with many machines and a realistically large number of jobs
A simple, fast, and effective heuristic for the single-machine total weighted tardiness problem
We consider the single-machine total weighted tardiness problem (TWT) where a set of n jobs with general weights w_1,âŠ, w_n, integer processing times p_1,âŠ, p_n, and integer due dates d_1,âŠ, d_n has to be scheduled non-preemptively. If C_j is the completion time of job j then T_j = max(0, C_j - d_j) denotes the tardiness of this job. The objective is to find a schedule S^{*}_{WT} that minimizes the weighted sum of the tardiness costs of all jobs computed as \sum_{j=1}^{n} w_j T_j. This problem is known to be unary NP-hard. Our goal is to design a constructive heuristic for this problem that yields excellent feasible solutions in short computational times by exploiting the structural properties of a preemptive relaxation
Minimizing value-at-risk in the single-machine total weighted tardiness problem
The vast majority of the machine scheduling literature focuses on deterministic
problems, in which all data is known with certainty a priori. This may be a reasonable assumption when the variability in the problem parameters is low. However, as variability in the parameters increases incorporating this uncertainty explicitly into a scheduling model is essential to mitigate the resulting adverse effects. In this paper, we consider the celebrated single-machine total weighted tardiness (TWT) problem in the presence of uncertain problem parameters. We impose a probabilistic constraint on the random TWT and introduce a risk-averse stochastic programming model. In particular, the objective of the proposed model is to find a non-preemptive static job processing sequence that minimizes the value-at-risk (VaR) measure on the random
TWT at a specified confidence level. Furthermore, we develop a lower bound on the optimal VaR that may also benefit alternate solution approaches in the future. In this study, we implement a tabu-search heuristic to obtain reasonably good feasible solutions and present results to demonstrate the effect of the risk parameter and the value of the proposed model with respect to a corresponding risk-neutral approach
Dynamic resource constrained multi-project scheduling problem with weighted earliness/tardiness costs
In this study, a conceptual framework is given for the dynamic multi-project scheduling problem with weighted earliness/tardiness costs (DRCMPSPWET) and a mathematical programming formulation of the problem is provided. In DRCMPSPWET, a project arrives on top of an existing project portfolio and a due date has to be quoted for the new project while minimizing the costs of schedule changes. The objective function consists of the weighted earliness tardiness costs of the activities of the existing projects in the current baseline schedule plus a term that increases linearly with the anticipated completion time of the new project. An iterated local search based approach is developed for large instances of this problem. In order to analyze the performance and behavior of the proposed method, a new multi-project data set is created by controlling the total number of activities, the due date tightness, the due date range, the number of resource types, and the completion time factor in an instance. A series of computational experiments are carried out to test the performance of the local search approach. Exact solutions are provided for the small instances. The results indicate that the local search heuristic performs well in terms of both solution quality and solution time
An exact extended formulation for the unrelated parallel machine total weighted completion time problem
The plethora of research on NP-hard parallel machine scheduling problems is focused on heuristics due to the theoretically and practically challenging nature of these problems. Only a handful of exact approaches are available
in the literature, and most of these suffer from scalability issues. Moreover, the majority of the papers on the subject are restricted to the identical parallel machine scheduling environment. In this context, the main contribution of this work is to recognize and prove that a particular preemptive relaxation for the problem of minimizing the total weighted completion time (TWCT) on a set of unrelated parallel machines naturally admits a non-preemptive optimal solution and gives rise to an exact mixed integer linear programming formulation of the problem. Furthermore, we exploit the structural properties of TWCT and attain a very fast and scalable exact Benders decomposition-based algorithm for solving this formulation. Computationally, our approach holds great promise and may even be embedded into iterative algorithms for more complex shop scheduling problems as instances with up to 1000 jobs and 8 machines are solved to optimality within a few seconds
- âŠ