60 research outputs found

    Optimization of the design and operation of FAIMS analyzers

    Get PDF
    Field asymmetric waveform ion mobility spectrometry (FAIMS) holds significant promise for post-ionization separations in conjunction with mass-spectrometric analyses. However, a limited understanding of fundamentals of FAIMS analyzers has made their design and operation largely an empirical exercise. Recently, we developed an a priori simulation of FAIMS that accounts for both ion diffusion (including anisotropic components) and Coulomb repulsion, and validated it by extensive comparisons with FAIMS/MS data. Here it is corroborated further by FAIMS-only measurements, and applied to explore how key instrumental parameters (analytical gap width and length, waveform frequency and profile, the identity and flow speed of buffer gas) affect FAIMS response. We find that the trade-off between resolution and sensitivity can be managed by varying gap width, RF frequency, and (in certain cases) buffer gas, with equivalent outcome. In particular, the resolving power can be approximately doubled compared to “typical” conditions. Throughput may be increased by either accelerating the gas flow (preferable) or shortening the device, but below certain minimum residence times performance deteriorates. Bisinusoidal and clipped-sinusoidal waveforms have comparable merit, but switching to rectangular waveforms would improve resolution and/or sensitivity. For any waveform profile, the ratio of two between voltages in high and low portions of the cycle produces the best performance

    Highly Sensitive and Robust Capillary Electrophoresis-Electrospray Ionization-Mass Spectrometry: Interfaces, Preconcentration Techniques and Applications

    No full text
    Capillary electrophoresis (CE) coupled with mass spectrometry (MS) through electrospray ionization (ESI) is a promising alternative technique to liquid chromatography-ESI-MS (LC-ESI-MS) due to its high separation efficiency and high detection sensitivity. A sensitive and robust interface is essential in CE-ESI-MS. Continued development of CE-ESI-MS interfaces in the last decade, including junction-at-the-tip interfaces and sheathless interfaces, has improved the sensitivity and robustness of CE-ESI-MS significantly. The limited loading capacity of CE, one of major reasons that limits the utility of CE as a routine separation method, has also been addressed effectively by the use of in-capillary sample preconcentration techniques, such as transient CITP/CZE and dynamic pH junction. CE-ESI-MS could yield higher sensitivity as compared with the conventional LC-ESI-MS, and, therefore, is capable of identifying more proteins and peptides when the sample amount is very limited, such as single cell analysis. To improve the protein sequence coverage, CE-ESI-MS can also be used as a complementary technique to LC-ESI-MS, or combined with reversed phase LC to form a two dimensional separation technique. CE-ESI-MS is also effective in quantifying targeted peptides/proteins in complex bio-matrix

    An Effective Recommendation Algorithm Based on Multi-Source Information

    No full text

    Fuzzy-precise positioning: A pre-search algorithm based on feature peaks of mass spectra for acceleration of chemical compound recognition

    No full text
    Fuzzy-precise positioning: A pre-search algorithm based on feature peaks of mass spectra for acceleration of chemical compound recognitio
    corecore