15 research outputs found

    Automatic Exposure Control and Estimation of Effective System Noise in Diffuse Fluorescence Tomography

    Get PDF
    A diffuse fluorescence tomography system, based upon time-correlated single photon counting, is presented with an automated algorithm to allow dynamic range variation through exposure control. This automated exposure control allows the upper and lower detection levels of fluorophore to be extended by an order of magnitude beyond the previously published performance and benefits in a slight decrease in system effective noise. The effective noise level is used as a metric to characterize the system performance, integrating both model-mismatch and calibration bias errors into a single parameter. This effective error is near 7% of the reconstructed fluorescent yield value, when imaging in just few minutes. Quantifying protoporphyrin IX concentrations down to 50 ng/ml is possible, for tumor-sized regions. This fluorophore has very low fluorescence yield, but high biological relevance for tumor imaging, given that it is produced in the mitochondria, and upregulated in many tumor types

    Fluorescence Tomography Characterization for Sub-Surface Imaging with Protoporphyrin IX

    Get PDF
    Optical imaging of fluorescent objects embedded in a tissue simulating medium was characterized using non-contact based approaches to fluorescence remittance imaging (FRI) and sub-surface fluorescence diffuse optical tomography (FDOT). Using Protoporphyrin IX as a fluorescent agent, experiments were performed on tissue phantoms comprised of typical in-vivo tumor to normal tissue contrast ratios, ranging from 3.5:1 up to 10:1. It was found that tomographic imaging was able to recover interior inclusions with high contrast relative to the background; however, simple planar fluorescence imaging provided a superior contrast to noise ratio. Overall, FRI performed optimally when the object was located on or close to the surface and, perhaps most importantly, FDOT was able to recover specific depth information about the location of embedded regions. The results indicate that an optimal system for localizing embedded fluorescent regions should combine fluorescence reflectance imaging for high sensitivity and sub-surface tomography for depth detection, thereby allowing more accurate localization in all three directions within the tissue

    Imaging of Glioma Tumor with Endogenous Fluorescence Tomography

    Get PDF
    Tomographic imaging of a glioma tumor with endogenous fluorescence is demonstrated using a noncontact single-photon counting fan-beam acquisition system interfaced with microCT imaging. The fluorescence from protoporphyrin IX (PpIX) was found to be detectable, and allowed imaging of the tumor from within the cranium, even though the tumor presence was not visible in the microCT image. The combination of single-photon counting detection and normalized fluorescence to transmission detection at each channel allowed robust imaging of the signal. This demonstrated use of endogenous fluorescence stimulation from aminolevulinic acid (ALA) and provides the first in vivo demonstration of deep tissue tomographic imaging with protoporphyrin IX. Fluorescence tomography provides a tool for preclinical molecular contrast agent assessment in oncology.1, 2, 3, 4 Systems have advanced in complexity to where noncontact imaging,5 automated boundary recovery,6 and sophisticated internal tissue shapes can be included in the recovered images. The translation of this work to humans will require molecular contrast agents that are amenable to regulatory approval and maintain tumor specificity in humans, where often nonspecific uptake of molecular imaging agents can decrease their utility. In this study, a new fluorescence tomography system coupled to microCT7 was used to illustrate diagnostic detection of orthotopic glioma tumors that were not apparent in the microCT images, using endogenous fluorescent contrast from protoporphyrin IX (PpIX). Glioma tumors provide significant endogenous fluorescence from PpIX,8, 9, 10, 11 and this is enhanced when the subject imaged has been administered aminolevulinic acid (ALA). The endogenous production process of PpIX is known to stem from the administered, ALA bypassing the regulatory inhibition of ALA synthase, allowing the heme synthesis pathway to proceed uninhibited. Since there is a limited supply of iron in the body, this process produces overabundance of PpIX rather than heme, and many tumors have been shown to have high yields of PpIX. Clinical trials with PpIX fluorescence guided resection of tumors have shown significant promise,12 and yet deep tissue imaging with PpIX fluorescence has not been exploited in clinical use. Early studies have shown that detection of these tumors with PpIX is feasible,13, 14 but no tomographic imaging has been used. This limitation in development has largely been caused by problems in wavelength filtering and low signal intensity, as well as background fluorescence from the skin limiting sensitivity to deeper structures. In the system developed and used here, this feasibility is demonstrated by imaging a human xenograft glioma model. To solve the sensitivity problem and study the ability to diagnostically image PpIX in vivo, time-correlated single-photon counting was used in the fluorescence tomography system, which provides maximum sensitivity. Figure 1a shows the system designed to match up with a microCT, allowing both x-ray structural and optical functional imaging sequentially. Lens-coupled detection of signals is acquired from the mouse using five time-resolved photomultiplier tubes (H7422P-50, Hamamatsu, Japan) with single-photon counting electronics (SPC-134 modules, Becker and Hickl GmbH, Germany). The system has fan-beam transmission geometry similar to a standard CT scanner, with single source delivery of a1-mW role= presentation \u3e1-mW pulsed diode laser light at 635nm role= presentation \u3e635nm , collimated to a 1-mm role= presentation \u3e1-mm effective area on the animal. The five detection lenses were arranged in an arc, each with 22.5-deg role= presentation \u3e22.5-deg angular separation, centered directly on the opposite side of the animal with long working distance pickup,7 allowing noncontact measurement of the diffuse light through the animal. The diffuse intensity signals collected at each of the five channels were then translated via 400-μm role= presentation \u3e400-μm fibers and split using beamsplitters to be directed toward the fluorescence (95%) and transmission (5%) channel detectors. A 650-nm role= presentation \u3e650-nm long-pass filter was used in the fluorescence channels to isolate the signal, and in the transmitted intensity signals, a neutral density filter (2 OD) was used to attenuate the signals. This latter filtering was necessary to ensure that the fluorescence and transmission. Intensity signals fell within the same dynamic range, allowing a single 1s role= presentation \u3e1s acquisition for each detector. Scans were then performed by rotating the fan-beam around the specimen to 32 locations. A GE eXplore Locus SP scanner (GE Healthcare, London, Ontario, Canada) that incorporated a detector with 94-micronpixel role= presentation \u3e94-micronpixel resolution, a 80-kV role= presentation \u3e80-kV peak voltage, and a tube current of 450μAs role= presentation \u3e450μAs , was used in acquiring the microCT data, as displayed in Fig. 2 . In this example, since soft tissue was being imaged, the CT data was largely used to image the exterior of the animal, although in future studies, it could be used to isolate the cranium region as well

    Challenges in Sub-Surface Fluorescence Diffuse Optical Imaging

    No full text
    A fully non-contact CCD-based approach to sub-surface fluorescence diffuse optical imaging is presented. An overview of CCD-noise sources are described and a possible solution for obtaining an adequate SNR in CCD-based diffuse optical imaging is implemented. To examine the impact of excitation and remission light attenuation in this geometry, the linearity of response in recovering object position was examined in simulations, with respect to changes in target size, target-to-background contrast, and depth. To provide insight regarding the technological complications of sub-surface imaging, liquid phantom experiments were performed for targets of size 4mm, 8mm and 14mm having 10:1 target-to-background contrast. Overall, the results indicate that steps must be taken to eliminate blooming artifacts, perhaps by physically blocking the active source as it is projected onto the CCD chip. In general, response linearity in the recovered target centroid position, size, and fluorophore concentration as well as complications arising due to partial volume sampling effects are expected to improve if prior structural images obtained from another modality are incorporated into the DOT reconstruction algorithm

    Diffuse fluorescence tomography analysis of B-scan mode geometry

    No full text
    A fluorescence diffuse optical tomography system capable of producing B-scan-type images of localized fluorescence regions is presented. The B-Scan mode is analogous to ultrasound where the excitation and remission signals are delivered from the tissue surface.</p

    WunderBot

    No full text
    The 2004 intelligent ground vehicle competition design report of an autonomous robot platform called WunderBot was described. The 300 lb. robot was driven by two 1.755 Hp Dc motors and was exceptionally maneuverable. Specific GUI features include real-time obstacle mapping, path-planning simulation, sensor information, collision and low battery alarms, plus plots of motor current and velocity vs. time. All the project goals as well as customer requests through thoughtful design, quality parts, creative programming, and a variety of features were achieved
    corecore