115 research outputs found

    Trace element fractionation between biotite, allanite, and granitic melt

    Get PDF
    <jats:title>Abstract</jats:title><jats:p>The partitioning of a large suite of trace elements between biotite and water-saturated granitic melt was measured at 2 kbar and 700—800 ˚C. To reach equilibrium and to grow biotite crystals large enough for analysis, runs usually lasted from 30 to 45 days. In every charge, a few trace elements were initially doped at the 0.1—0.5 wt. % level and analyzed by electron microprobe after the run. First-row transition metal ions are highly compatible in biotite with D<jats:sup>biotite/melt</jats:sup> of 17 for Ti, 35 for V, 47 for Co, 174 for Ni, and 5.8 for Zn. A very notable exception is Cu with D<jats:sup>biotite/melt</jats:sup> < 0.9. This is likely one of the reasons why Cu is enriched together with Mo (D<jats:sup>biotite/melt</jats:sup> = 0.29) in porphyry deposits associated with intermediate to felsic plutons, while the other transition metals are not. Both Nb and Ta are mildly compatible in biotite with D<jats:sup>biotite/melt</jats:sup> being larger for Nb (3.69) than for Ta (1.89). Moderate (15—30%) biotite fractionation would be sufficient to reduce the Nb/Ta ratio from the chondritic value to the range observed in the continental crust. Moreover, the strong partitioning of Ti into biotite implies that already modest biotite fractionation suppresses the saturation of Ti-oxide phases and thereby indirectly facilitates the enrichment of Ta over Nb in the residual melt. The heavy alkalis, alkaline earths, and Pb are only mildly fractionated between biotite and melt (D<jats:sup>biotite/melt</jats:sup> = 3.8 for Rb, 0.6 for Cs, 0.6 for Sr, 1.8 for Ba, 0.7 for Pb). The rare earth elements are generally incompatible in biotite, with a minimum for D<jats:sup>biotite/melt</jats:sup> of 0.03–0.06 at Gd, Tb, and Dy, while both the light and heavy rare earths are less incompatible (e.g. D<jats:sup>biotite/melt</jats:sup> = 0.6 for La and 0.3 for Yb). This behavior probably reflects a partitioning into two sites, the K site for the light rare earths and the octahedral Mg site for the heavy rare earths. There is no obvious dependence of the rare earth partition coefficients on tetrahedral Al in the biotite, presumably because charge balancing by cation vacancies is possible. Allanite was found as run product in some experiments. For the light rare earths, D<jats:sup>allanite/melt</jats:sup> is very high (e.g. 385 to 963 for Ce and Nd) and appears to increase with decreasing temperatures. However, the rather high solubility of allanite in the melts implies that it likely only crystallizes during the last stages of cooling of most magmas, except if the source magma is unusually enriched in rare earths.</jats:p&gt

    Electrical Conductivity of KCI-H₂O Fluids in the Crust and Lithospheric Mantle

    Get PDF

    Fluorine in silicate glasses: A multinuclear nuclear magnetic resonance study

    Get PDF
    Anhydrous nepheline, jadeite, and albite glasses doped with F as well as hydrous F-containing haplogranitic glasses were investigated using 19F combined rotation and multiple-pulse spectroscopy; 19F → 29Si cross-polarization/magic angle spinning (MAS); and high-power 19F decoupled 29Si, 23Na, and 27Al MAS nuclear magnetic resonance methods. Fluorine preferentially coordinates with Al to form octahedral AlF63− complexes in all glasses studied. In addition, F anions bridging two Al cations, units containing octahedral Al coordinated by both O and F, or tetrahedral Al-F complexes might be present. The presence of Si-F bonds cannot be entirely ruled out but appears unlikely on the basis of the 19F → 29Si CP/MAS spectra. There is no evidence for any significant coordination of F with alkalis in the glasses studied. 23Na spectra are identical for the samples and their F-free equivalents and the spectra do not change upon decoupling of 19F. The speciation of F in the hydrous and anhydrous glasses appears to be very similar. Over the range of F contents studied ( up to 5 wt.% ), there seems to be hardly any dependence of F speciation on the concentration of F in the samples. The spectroscopic results explain the decrease of the viscosity of silicate melts with increasing F content by removal of Al from bridging AlO4-units due to complexing with F, which causes depolymerization of the melt. The same mechanism can account for the shift of the eutectic point in the haplogranite system to more feldspar-rich compositions with increasing F content, and for the peraluminous composition of most F-rich granites. Liquid immiscibility in F-rich granitic melts might be caused by formation of (Na,K)3AlF6 units in the melt with little or no interaction with the silicate component. The presence of F in granitic melts might increase the solubility of high field strength cations by making nonbridging O atoms available which form complexes with these cations

    The composition of subduction zone fluids and the origin of the trace element enrichment in arc magmas

    Get PDF
    <jats:title>Abstract</jats:title><jats:p>The partitioning of major and trace elements between eclogite and aqueous fluids with variable salinity was studied at 700–800 °C and 4–6 GPa in piston cylinder and multi anvil experiments. Fluid compositions were determined using the diamond trap technique combined with laser ablation ICP-MS measurements in the frozen state. In addition to NaCl, SiO<jats:sub>2</jats:sub> is the main solute in the fluids. The fluid/eclogite partition coefficients of the large ion lithophile elements (LILE), such as Rb, Cs, Sr, and Ba as well as those of the light rare earths (LREE), of Pb, and of U increase by up to three orders of magnitude with salinity. These elements will therefore be efficiently transported by saline fluids. On the other hand, typical high field strength elements, such as Ti, Nb, and Ta, are not mobilized even at high salinities. Increasing temperature and pressure gradually increases the partitioning into the fluid. In particular, Th is mobilized by silica-rich fluids at 6 GPa already at low salinities. We show that we can fully reproduce the trace element enrichment pattern of primitive arc basalts by adding a few percent of saline fluid (with 5–10 wt% Cl) released from the basaltic slab to the zone of melting in the mantle wedge. Assuming 2 wt% of rutile in the eclogite equilibrated with the saline fluid produces a negative Nb Ta anomaly that is larger than in most primitive arc basalts. Therefore, we conclude that the rutile fraction in the subducted eclogite below most arcs is likely < 1 wt%. In fact, saline fluids would even produce a noticeable negative Nb Ta anomaly without any rutile in the eclogite residue. Metasomatism by sediment melts alone, on the other hand, is unable to produce the enrichment pattern seen in arc basalts. We, therefore, conclude that at least for primitive arc basalts, the release of hydrous fluids from the basaltic part of the subducted slab is the trigger for melting and the main agent of trace element enrichment. The contribution of sediment melts to the petrogenesis of these magmas is likely negligible. In the supplementary material, we provide a “Subduction Calculator” in Excel format, which allows the calculation of the trace element abundance pattern in primitive arc basalts as function of fluid salinity, the amount of fluid released from the basaltic part of the subducted slab, the fluid fraction added to the source, and the degree of melting.</jats:p&gt

    Einleitung

    Get PDF
    Zuerst erschienen im Oekom-Verlag: Keppler, Dorothee; Walk, Heike; Dienel, Hans-Liudger: Einleitung. - In: Keppler, Dorothee [u.a.] (Hrsg.): Erneuerbare Energien ausbauen! : Erfahrungen und Perspektiven regionaler Akteure in Ost und West. - München : Oekom, 2009. - ISBN: 978-3-86581-123-3. - S. 9–18

    Einführung

    Get PDF
    Zuerst erschienen im Oekom-Verlag: Keppler, Dorothee; Böhm, Birgit; Dienel Hans-Liudger: Einführung. - In: Keppler, Dorothee; Böhm, Birgit; Dienel, Hans-Liudger (Hg.): Die Bürgerausstellung : die Perspektive von Bürgern und Bürgerinnen als Gegenstand qualitativer Sozialforschung und praktischer Beteiligung. - München : Oekom, 2013. - (Blickwechsel ; 10) - ISBN: 978-3-86581-234-6. - S. 7–13

    Fluorine in silicate glasses: A multinuclear nuclear magnetic resonance study

    Get PDF
    Anhydrous nepheline, jadeite, and albite glasses doped with F as well as hydrous F-containing haplogranitic glasses were investigated using 19F combined rotation and multiple-pulse spectroscopy; 19F → 29Si cross-polarization/magic angle spinning (MAS); and high-power 19F decoupled 29Si, 23Na, and 27Al MAS nuclear magnetic resonance methods. Fluorine preferentially coordinates with Al to form octahedral AlF63− complexes in all glasses studied. In addition, F anions bridging two Al cations, units containing octahedral Al coordinated by both O and F, or tetrahedral Al-F complexes might be present. The presence of Si-F bonds cannot be entirely ruled out but appears unlikely on the basis of the 19F → 29Si CP/MAS spectra. There is no evidence for any significant coordination of F with alkalis in the glasses studied. 23Na spectra are identical for the samples and their F-free equivalents and the spectra do not change upon decoupling of 19F. The speciation of F in the hydrous and anhydrous glasses appears to be very similar. Over the range of F contents studied ( up to 5 wt.% ), there seems to be hardly any dependence of F speciation on the concentration of F in the samples. The spectroscopic results explain the decrease of the viscosity of silicate melts with increasing F content by removal of Al from bridging AlO4-units due to complexing with F, which causes depolymerization of the melt. The same mechanism can account for the shift of the eutectic point in the haplogranite system to more feldspar-rich compositions with increasing F content, and for the peraluminous composition of most F-rich granites. Liquid immiscibility in F-rich granitic melts might be caused by formation of (Na,K)3AlF6 units in the melt with little or no interaction with the silicate component. The presence of F in granitic melts might increase the solubility of high field strength cations by making nonbridging O atoms available which form complexes with these cations

    HIV-1 Buds Predominantly at the Plasma Membrane of Primary Human Macrophages

    Get PDF
    HIV-1 assembly and release are believed to occur at the plasma membrane in most host cells with the exception of primary macrophages, for which exclusive budding at late endosomes has been reported. Here, we applied a novel ultrastructural approach to assess HIV-1 budding in primary macrophages in an immunomarker-independent manner. Infected macrophages were fed with BSA-gold and stained with the membrane-impermeant dye ruthenium red to identify endosomes and the plasma membrane, respectively. Virus-filled vacuolar structures with a seemingly intracellular localization displayed intense staining with ruthenium red, but lacked endocytosed BSA-gold, defining them as plasma membrane. Moreover, HIV budding profiles were virtually excluded from gold-filled endosomes while frequently being detected on ruthenium red–positive membranes. The composition of cellular marker proteins incorporated into HIV-1 supported a plasma membrane–derived origin of the viral envelope. Thus, contrary to current opinion, the plasma membrane is the primary site of HIV-1 budding also in infected macrophages
    corecore