116 research outputs found

    Hermitian Young Operators

    Full text link
    Starting from conventional Young operators we construct Hermitian operators which project orthogonally onto irreducible representations of the (special) unitary group.Comment: 15 page

    Two-point correlations of the Gaussian symplectic ensemble from periodic orbits

    Full text link
    We determine the asymptotics of the two-point correlation function for quantum systems with half-integer spin which show chaotic behaviour in the classical limit using a method introduced by Bogomolny and Keating [Phys. Rev. Lett. 77 (1996) 1472-1475]. For time-reversal invariant systems we obtain the leading terms of the two-point correlation function of the Gaussian symplectic ensemble. Special attention has to be paid to the role of Kramers' degeneracy.Comment: 7 pages, no figure

    Parabolic maps with spin: Generic spectral statistics with non-mixing classical limit

    Full text link
    We investigate quantised maps of the torus whose classical analogues are ergodic but not mixing. Their quantum spectral statistics shows non-generic behaviour, i.e.it does not follow random matrix theory (RMT). By coupling the map to a spin 1/2, which corresponds to changing the quantisation without altering the classical limit of the dynamics on the torus, we numerically observe a transition to RMT statistics. The results are interpreted in terms of semiclassical trace formulae for the maps with and without spin respectively. We thus have constructed quantum systems with non-mixing classical limit which show generic (i.e. RMT) spectral statistics. We also discuss the analogous situation for an almost integrable map, where we compare to Semi-Poissonian statistics.Comment: 29 pages, 20 figure

    Semiclassical Approach to Parametric Spectral Correlation with Spin 1/2

    Full text link
    The spectral correlation of a chaotic system with spin 1/2 is universally described by the GSE (Gaussian Symplectic Ensemble) of random matrices in the semiclassical limit. In semiclassical theory, the spectral form factor is expressed in terms of the periodic orbits and the spin state is simulated by the uniform distribution on a sphere. In this paper, instead of the uniform distribution, we introduce Brownian motion on a sphere to yield the parametric motion of the energy levels. As a result, the small time expansion of the form factor is obtained and found to be in agreement with the prediction of parametric random matrices in the transition within the GSE universality class. Moreover, by starting the Brownian motion from a point distribution on the sphere, we gradually increase the effect of the spin and calculate the form factor describing the transition from the GOE (Gaussian Orthogonal Ensemble) class to the GSE class.Comment: 25 pages, 2 figure

    Periodic-Orbit Theory of Universality in Quantum Chaos

    Full text link
    We argue semiclassically, on the basis of Gutzwiller's periodic-orbit theory, that full classical chaos is paralleled by quantum energy spectra with universal spectral statistics, in agreement with random-matrix theory. For dynamics from all three Wigner-Dyson symmetry classes, we calculate the small-time spectral form factor K(τ)K(\tau) as power series in the time τ\tau. Each term τn\tau^n of that series is provided by specific families of pairs of periodic orbits. The contributing pairs are classified in terms of close self-encounters in phase space. The frequency of occurrence of self-encounters is calculated by invoking ergodicity. Combinatorial rules for building pairs involve non-trivial properties of permutations. We show our series to be equivalent to perturbative implementations of the non-linear sigma models for the Wigner-Dyson ensembles of random matrices and for disordered systems; our families of orbit pairs are one-to-one with Feynman diagrams known from the sigma model.Comment: 31 pages, 17 figure

    Semiclassical Time Evolution and Trace Formula for Relativistic Spin-1/2 Particles

    Full text link
    We investigate the Dirac equation in the semiclassical limit \hbar --> 0. A semiclassical propagator and a trace formula are derived and are shown to be determined by the classical orbits of a relativistic point particle. In addition, two phase factors enter, one of which can be calculated from the Thomas precession of a classical spin transported along the particle orbits. For the second factor we provide an interpretation in terms of dynamical and geometric phases.Comment: 8 pages, no figure

    Level spacings and periodic orbits

    Full text link
    Starting from a semiclassical quantization condition based on the trace formula, we derive a periodic-orbit formula for the distribution of spacings of eigenvalues with k intermediate levels. Numerical tests verify the validity of this representation for the nearest-neighbor level spacing (k=0). In a second part, we present an asymptotic evaluation for large spacings, where consistency with random matrix theory is achieved for large k. We also discuss the relation with the method of Bogomolny and Keating [Phys. Rev. Lett. 77 (1996) 1472] for two-point correlations.Comment: 4 pages, 2 figures; major revisions in the second part, range of validity of asymptotic evaluation clarifie

    Semiclassical form factor for chaotic systems with spin 1/2

    Full text link
    We study the properties of the two-point spectral form factor for classically chaotic systems with spin 1/2 in the semiclassical limit, with a suitable semiclassical trace formula as our principal tool. To this end we introduce a regularized form factor and discuss the limit in which the so-called diagonal approximation can be recovered. The incorporation of the spin contribution to the trace formula requires an appropriate variant of the equidistribution principle of long periodic orbits as well as the notion of a skew product of the classical translational and spin dynamics. Provided this skew product is mixing, we show that generically the diagonal approximation of the form factor coincides with the respective predictions from random matrix theory.Comment: 20 pages, no figure

    Quantum cat maps with spin 1/2

    Full text link
    We derive a semiclassical trace formula for quantized chaotic transformations of the torus coupled to a two-spinor precessing in a magnetic field. The trace formula is applied to semiclassical correlation densities of the quantum map, which, according to the conjecture of Bohigas, Giannoni and Schmit, are expected to converge to those of the circular symplectic ensemble (CSE) of random matrices. In particular, we show that the diagonal approximation of the spectral form factor for small arguments agrees with the CSE prediction. The results are confirmed by numerical investigations.Comment: 26 pages, 3 figure

    Zitterbewegung and semiclassical observables for the Dirac equation

    Full text link
    In a semiclassical context we investigate the Zitterbewegung of relativistic particles with spin 1/2 moving in external fields. It is shown that the analogue of Zitterbewegung for general observables can be removed to arbitrary order in \hbar by projecting to dynamically almost invariant subspaces of the quantum mechanical Hilbert space which are associated with particles and anti-particles. This not only allows to identify observables with a semiclassical meaning, but also to recover combined classical dynamics for the translational and spin degrees of freedom. Finally, we discuss properties of eigenspinors of a Dirac-Hamiltonian when these are projected to the almost invariant subspaces, including the phenomenon of quantum ergodicity
    corecore