22 research outputs found
Phonon Spectroscopy at Atomic Resolution
Advances in source monochromation in transmission electron microscopy have opened up new possibilities for investigations of condensed matter using the phonon-loss sector of the energy-loss spectrum. Here, we explore the spatial variations of the spectrum as an atomic-sized probe is scanned across a thin flake of hexagonal boron nitride. We demonstrate that phonon spectral mapping of atomic structure is possible. These results are consistent with a model for the quantum excitation of phonons and confirm that Z-contrast imaging is based on inelastic scattering associated with phonon excitation
Enhancement of Electrical Conduction and Phonon Scattering in Ga2O3(ZnO)9-In2O3(ZnO)9 Compounds by Modification of Interfaces at the Nanoscale
The Ga2O3(ZnO)9 and In2O3(ZnO)9 homologous phases have attracted attention as thermoelectric (TE) oxides due to their layered structures. Ga2O3(ZnO)9 exhibits low thermal conductivity, while In2O3(ZnO)9 possesses higher electrical conductivity. The TE properties of the solid solution of Ga2O3(ZnO)9-In2O3(ZnO)9 were explored and correlated with changes in the crystal structure. High-quality (1−x)Ga2O3(ZnO)9-(ZnO)9 (x = 0.0 to 1.0) ceramics were prepared by the solid-state route using B2O3 and Nd2O3 as additives. The crystal structures were analysed by x-ray diffraction, high-resolution transmission electron microscopy and atomic resolution scanning transmission electron microscopy–high-angle annular dark field imaging–energy dispersive x-ray spectroscopy (STEM–HAADF–EDS) techniques. A layered superstructure with compositional modulations was observed in all samples in the (1−x)Ga2O3(ZnO)9-xIn2O3(ZnO)9 system. All the ceramics exhibited nanoscale structural features identified as Ga- and In-rich inversion boundaries (IBs). Substitution of 20 mol.% In (x = 0.2) in the Ga2O3(ZnO)9 compounds generated basal and pyramidal indium IBs typically found in the In2O3(ZnO)m system. The (Ga0.8In0.2)2O3(ZnO)9 compound does not exhibit the structural features of the Cmcm Ga2O3(ZnO)9 compound, which is formed by a stacking of Ga-rich IBs along the pyramidal plane of the wurtzite ZnO, but features that resemble the crystal structure exhibited by the R3¯¯¯m In2O3(ZnO)m with basal and pyramidal indium IBs. The structural changes led to improved TE performance. For example, (Ga0.8In0.2)2O3(ZnO)9 showed a low thermal conductivity of 2 W/m K and a high power factor of 150 μW/m K2 giving a figure of merit (ZT) of 0.07 at 900 K. This is the highest ZT for Ga2O3(ZnO)9-based homologous compounds and is comparable with the highest ZT reported for In2O3(ZnO)9 homologous compounds
Imaging the Spatial Distribution of Electronic States in Graphene Using Electron Energy-Loss Spectroscopy: Prospect of Orbital Mapping
The spatial distributions of antibonding π∗ and σ∗ states in epitaxial graphene multilayers are mapped using electron energy-loss spectroscopy in a scanning transmission electron microscope. Inelastic channeling simulations validate the interpretation of the spatially resolved signals in terms of electronic orbitals, and demonstrate the crucial effect of the material thickness on the experimental capability to resolve the distribution of unoccupied states. This work illustrates the current potential of core-level electron energy-loss spectroscopy towards the direct visualization of electronic orbitals in a wide range of materials, of huge interest to better understand chemical bonding among many other properties at interfaces and defects in solids
Utilising unit-cell twinning operators to reduce lattice thermal conductivity in modular structures: Structure and thermoelectric properties of Ga₂O₃(ZnO)₉
The Ga2O3(ZnO)m family of homologous compounds have been identified as potential thermoelectric materials, but properties are often limited due to low densification. By use of B2O3 as an effective liquid phase sintering aid, high density, high quality ceramic samples of Ga2O3(ZnO)9 have been synthesised. The atomic structure and local chemical composition of Ga2O3(ZnO)9 have been determined by means of high resolution X-ray diffraction and atomic resolution STEM-HAADF, EDS and EELS measurements. X-ray analysis showed that the compound crystalizes in the Cmcm orthorhombic symmetry. Atomically resolved HAADF-STEM images unambiguously showed the presence of nano-sized, wedge-shaped twin boundaries, parallel to the b-axis. These nano-scale structural features were chemically investigated, for the first time, revealing the exact distributions of Zn and Ga; it was found that Ga ions occupy sites at the junction of twin boundaries and inversion boundaries. HAADF-EDS analysis showed that the calcination step has a significant impact on crystal structure homogeneity. By use of a sintering aid and optimization of processing parameters the ceramics achieved a low thermal conductivity of 1.5–2.2 W/m.K (for the temperature range 300–900 K), a power factor of 40–90 μW/K.m2, leading to a ZT of 0.06 at 900 K. The work shows a route to exploit nanoscale interface features to reduce the thermal conductivity and thereby enhance the thermoelectric figure of merit in complex thermoelectric materials
Elucidation of Metal Local Environments in Single‐Atom Catalysts Based on Carbon Nitrides
The ability to tailor the properties of metal centers in single-atom heterogeneous catalysts depends on the availability of advanced approaches for characterization of their structure. Except for specific host materials with well-defined metal adsorption sites, determining the local atomic environment remains a crucial challenge, often relying heavily on simulations. This article reports an advanced analysis of platinum atoms stabilized on poly(triazine imide), a nanocrystalline form of carbon nitride. The approach discriminates the distribution of surface coordination sites in the host, the evolution of metal coordination at different stages during the synthesis of the material, and the potential locations of metal atoms within the lattice. Consistent with density functional theory predictions, simultaneous high-resolution imaging in high-angle annular dark field and bright field modes experimentally confirms the preferred localization of platinum in-plane in the corners of the triangular cavities. X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and dynamic nuclear polarization enhanced 15N nuclear magnetic resonance (DNP-NMR) spectroscopies coupled with density functional theory (DFT) simulations reveal that the predominant metal species comprise Pt(II) bound to three nitrogen atoms and one chlorine atom inside the coordination sites. The findings, which narrow the gap between experimental and theoretical elucidation, contribute to the improved structural understanding and provide a benchmark for exploring the speciation of single-atom catalysts based on carbon nitrides
Single-atom vibrational spectroscopy in the scanning transmission electron microscope
Single-atom impurities and other atomic-scale defects can notably alter the local vibrational responses of solids and, ultimately, their macroscopic properties. Using high-resolution electron energy-loss spectroscopy in the electron microscope, we show that a single substitutional silicon impurity in graphene induces a characteristic, localized modification of the vibrational response. Extensive ab initio calculations reveal that the measured spectroscopic signature arises from defect-induced pseudo-localized phonon modes—that is, resonant states resulting from the hybridization of the defect modes and the bulk continuum—with energies that can be directly matched to the experiments. This finding realizes the promise of vibrational spectroscopy in the electron microscope with single-atom sensitivity and has broad implications across the fields of physics, chemistry, and materials science