292 research outputs found
Recommended from our members
The dividend policy of U.S. owned foreign subsidiaries.
ManagementDoctor of Philosophy (Ph.D.
Ricochet of Spheres on Sand of Various Temperature
The debris generated by the explosion of a building or ammunition is flown far away through the ricochet phenomenon. The debris contains a very large amount of energy, and a risk factor surrounding it may be applied. The safety distance from debris is set from experiments or FEM analysis. The ricochet of debris is affected not only by the initial conditions of the debris, but also by the conditions of the medium. In this paper, the effect of sand temperature on the ricochet of sphere projectiles was investigated through experiments and FEM, by measuring the shear stress and internal friction angle when the sand temperature increases. As the temperature of the sand increases, the shear stress and the internal friction angle decrease, and the penetration depth of the projectile increases. As the depth of penetration becomes longer, the kinetic energy is lost more by the friction force with the sand and, the sphere projectile speed decreases more. This is mainly caused by the energy loss of the projectile, so the kinetic energy of the ricocheted projectile is reduced. Therefore, when setting the optimized inhabited building distance (IBD), the conditions of the medium should be taken into account
RECYCLING PROCESS OF U3O8 POWDER IN MnO-Al2O3 DOPED LARGE GRAIN UO2 PELLETS
The effect of various process variables on the powder properties of recycled U3O8 from MnO-Al2O3 doped large grain UO2 pellets and the effect of those recycled U3O8 powders on the sintered density and grain size of MnO-Al2O3 doped large grain UO2 pellets have been investigated. The evolution of morphology, size, and BET surface area of the recycled U3O8 powders according to the respective variation of the thermo-mechanical treatment variables of oxidation temperature, powder milling, and sequential cyclic heat treatment of oxidation and then reduction was examined. The correlation between the BET surface area of recycled U3O8 powder and the sintered pellet properties of MnO-Al2O3 doped pellets showed that the pellet density and grain size of doped pellets were increased and then saturated by increasing the BET surface area of the recycled U3O8 powder. The density and grain size of the pellets were maximized when the BET surface area of the recycled U3O8 powder was in the vicinity of 3m2/g. Among the process variables applied in this study, the cyclic heat treatment followed by low temperature oxidation was a potential process combination to obtain the sinter-active U3O8 powder
Negative pressure wound therapy for soft tissue injuries around the foot and ankle
<p>Abstract</p> <p>Background</p> <p>This study was performed to evaluate the results of negative pressure wound therapy (NPWT) in patients with open wounds in the foot and ankle region.</p> <p>Materials and methods</p> <p>Using a NPWT device, 16 patients were prospectively treated for soft tissue injuries around the foot and ankle. Mean patient age was 32.8 years (range, 3–67 years). All patients had suffered an acute trauma, due to a traffic accident, a fall, or a crush injury, and all had wounds with underlying tendon or bone exposure. Necrotic tissues were debrided before applying NPWT. Dressings were changed every 3 or 4 days and treatment was continued for 18.4 days on average (range, 11–29 days).</p> <p>Results</p> <p>Exposed tendons and bone were successfully covered with healthy granulation tissue in all cases except one. The sizes of soft tissue defects reduced from 56.4 cm<sup>2 </sup>to 42.9 cm<sup>2 </sup>after NPWT (mean decrease of 24%). In 15 of the 16 cases, coverage with granulation tissue was achieved and followed by a skin graft. A free flap was needed to cover exposed bone and tendon in one case. No major complication occurred that was directly attributable to treatment. In terms of minor complications, two patients suffered scar contracture of grafted skin.</p> <p>Conclusion</p> <p>NPWT was found to facilitate the rapid formation of healthy granulation tissue on open wounds in the foot and ankle region, and thus, to shorten healing time and minimize secondary soft tissue defect coverage procedures.</p
Recommended from our members
Highly-Sensitive Textile Pressure Sensors Enabled by Suspended-Type All Carbon Nanotube Fiber Transistor Architecture.
Among various wearable health-monitoring electronics, electronic textiles (e-textiles) have been considered as an appropriate alternative for a convenient self-diagnosis approach. However, for the realization of the wearable e-textiles capable of detecting subtle human physiological signals, the low-sensing performances still remain as a challenge. In this study, a fiber transistor-type ultra-sensitive pressure sensor (FTPS) with a new architecture that is thread-like suspended dry-spun carbon nanotube (CNT) fiber source (S)/drain (D) electrodes is proposed as the first proof of concept for the detection of very low-pressure stimuli. As a result, the pressure sensor shows an ultra-high sensitivity of ~3050 Pa-1 and a response/recovery time of 258/114 ms in the very low-pressure range of <300 Pa as the fiber transistor was operated in the linear region (VDS = -0.1 V). Also, it was observed that the pressure-sensing characteristics are highly dependent on the contact pressure between the top CNT fiber S/D electrodes and the single-walled carbon nanotubes (SWCNTs) channel layer due to the air-gap made by the suspended S/D electrode fibers on the channel layers of fiber transistors. Furthermore, due to their remarkable sensitivity in the low-pressure range, an acoustic wave that has a very tiny pressure could be detected using the FTPS
Primary Percutaneous Coronary Intervention for Acute Myocardial Infarction with Idiopathic Thrombocytopenic Purpura: A Case Report
Acute myocardial infarction (AMI) is rare in patients with idiopathic thrombocytopenic purpura (ITP). We describe a case of an AMI during thrombocytopenia in a patient with chronic ITP. A 47-yr-old woman presented with anterior chest pain and a low platelet count (21,000/µL) at admission. Urgent coronary angiography revealed total occlusion of proximal right coronary artery and primary percutaneous coronary intervention (PCI) was performed successfully. This case suggests that primary PCI may be a therapeutic option for an AMI in patients with ITP, even though the patient had severe thrombocytopenia
Recommended from our members
Locally Controlled Sensing Properties of Stretchable Pressure Sensors Enabled by Micro-Patterned Piezoresistive Device Architecture.
For wearable health monitoring systems and soft robotics, stretchable/flexible pressure sensors have continuously drawn attention owing to a wide range of potential applications such as the detection of human physiological and activity signals, and electronic skin (e-skin). Here, we demonstrated a highly stretchable pressure sensor using silver nanowires (AgNWs) and photo-patternable polyurethane acrylate (PUA). In particular, the characteristics of the pressure sensors could be moderately controlled through a micro-patterned hole structure in the PUA spacer and size-designs of the patterned hole area. With the structural-tuning strategies, adequate control of the site-specific sensitivity in the range of 47~83 kPa-1 and in the sensing range from 0.1 to 20 kPa was achieved. Moreover, stacked AgNW/PUA/AgNW (APA) structural designed pressure sensors with mixed hole sizes of 10/200 µm and spacer thickness of 800 µm exhibited high sensitivity (~171.5 kPa-1) in the pressure sensing range of 0~20 kPa, fast response (100~110 ms), and high stretchability (40%). From the results, we envision that the effective structural-tuning strategy capable of controlling the sensing properties of the APA pressure sensor would be employed in a large-area stretchable pressure sensor system, which needs site-specific sensing properties, providing monolithic implementation by simply arranging appropriate micro-patterned hole architectures
- …