2,452 research outputs found
Quantum numbers of the state and orbital angular momentum in its decay
Angular correlations in decays, with , and , are used to measure
orbital angular momentum contributions and to determine the value of
the meson. The data correspond to an integrated luminosity of 3.0
fb of proton-proton collisions collected with the LHCb detector. This
determination, for the first time performed without assuming a value for the
orbital angular momentum, confirms the quantum numbers to be .
The is found to decay predominantly through S wave and an upper limit
of at C.L. is set on the fraction of D wave.Comment: 16 pages, 4 figure
First observation and amplitude analysis of the decay
The decay is observed in a data sample
corresponding to of collision data recorded by the LHCb
experiment during 2011 and 2012. Its branching fraction is measured to be
where the uncertainties are statistical, systematic and from
the branching fraction of the normalisation channel , respectively. An amplitude analysis of the resonant
structure of the decay is used to measure the
contributions from quasi-two-body ,
, and
decays, as well as from nonresonant sources. The
resonance is determined to have spin~1.Comment: 39 pages, 10 figures, submitted to Phys. Rev. D. Updated following
erratum 10.1103/PhysRevD.93.11990
Observation of the decay
The first observation of the decay is reported. The
study is based on a sample of proton-proton collisions corresponding to
of integrated luminosity collected with the LHCb detector. The
significance of the signal is standard deviations. The branching fraction
is measured to be , where the third uncertainty comes from the
branching fraction that is used as a normalisation.
In addition, the charge asymmetries of and
, which are control channels, are measured to be and , respectively. All results are consistent with
theoretical expectations
Study of and decays and determination of the CKM angle
We report a study of the suppressed and favored
decays, where the neutral meson is detected
through its decays to the and CP-even and
final states. The measurement is carried out using a proton-proton
collision data sample collected by the LHCb experiment, corresponding to an
integrated luminosity of 3.0~fb. We observe the first significant
signals in the CP-even final states of the meson for both the suppressed
and favored modes, as well as
in the doubly Cabibbo-suppressed final state of the decay. Evidence for the ADS suppressed decay , with , is also presented. From the observed
yields in the , and their
charge conjugate decay modes, we measure the value of the weak phase to be
. This is one of the most precise
single-measurement determinations of to date.Comment: 22 pages, 9 figures; All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-020.htm
Differential branching fraction and angular analysis of decays
The differential branching fraction of the rare decay is measured as a function of , the
square of the dimuon invariant mass. The analysis is performed using
proton-proton collision data, corresponding to an integrated luminosity of 3.0
\mbox{ fb}^{-1}, collected by the LHCb experiment. Evidence of signal is
observed in the region below the square of the mass. Integrating
over 15 < q^{2} < 20 \mbox{ GeV}^2/c^4 the branching fraction is measured as
d\mathcal{B}(\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^-)/dq^2 = (1.18 ^{+
0.09} _{-0.08} \pm 0.03 \pm 0.27) \times 10^{-7} ( \mbox{GeV}^{2}/c^{4})^{-1},
where the uncertainties are statistical, systematic and due to the
normalisation mode, , respectively.
In the intervals where the signal is observed, angular distributions are
studied and the forward-backward asymmetries in the dimuon ()
and hadron () systems are measured for the first time. In the
range 15 < q^2 < 20 \mbox{ GeV}^2/c^4 they are found to be A^{l}_{\rm FB} =
-0.05 \pm 0.09 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)} and A^{h}_{\rm FB} =
-0.29 \pm 0.07 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)}.Comment: 27 pages, 10 figures, Erratum adde
Precise measurements of the properties of the B-1(5721)(0,+) and B-2*(5747)(0,+) states and observation of B-+,B-0 pi(-,+) mass structures
Invariant mass distributions of B+π− and B0π+ combinations are investigated in order to study excited B mesons. The analysis is based on a data sample corresponding to 3.0 fb−1 of pp collision data, recorded by the LHCb detector at centre-of-mass energies of 7 and 8 TeV. Precise measurements of the masses and widths of the B1(5721)0,+ and B2(5747)0,+ states are reported. Clear enhancements, particularly prominent at high pion transverse momentum, are seen over background in the mass range 5850-6000 MeV in both B+π− and B0π+ combinations. The structures are consistent with the presence of four excited B mesons, labelled BJ (5840)0,+ and BJ (5960)0,+, whose masses and widths are obtained under different hypotheses for their quantum numbers
Amplitude analysis of decays
The Dalitz plot distribution of decays
is studied using a data sample corresponding to of
collision data recorded by the LHCb experiment during 2011 and 2012. The data
are described by an amplitude model that contains contributions from
intermediate , , and
resonances. The model also contains components to describe broad structures,
including the and resonances, in the
S-wave and the S- and P-waves. The masses and widths of the
and resonances are measured, as are the complex
amplitudes and fit fractions for all components included in the amplitude
model. The model obtained will be an integral part of a future determination of
the angle of the CKM quark mixing matrix using decays.Comment: 33 pages, 12 figures; updated for publicatio
Observation of resonances consistent with pentaquark states in decays
Observations of exotic structures in the channel, that we refer to
as pentaquark-charmonium states, in decays are
presented. The data sample corresponds to an integrated luminosity of 3/fb
acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude
analysis is performed on the three-body final-state that reproduces the
two-body mass and angular distributions. To obtain a satisfactory fit of the
structures seen in the mass spectrum, it is necessary to include two
Breit-Wigner amplitudes that each describe a resonant state. The significance
of each of these resonances is more than 9 standard deviations. One has a mass
of MeV and a width of MeV, while the second
is narrower, with a mass of MeV and a width of MeV. The preferred assignments are of opposite parity, with one
state having spin 3/2 and the other 5/2.Comment: 48 pages, 18 figures including the supplementary material, v2 after
referee's comments, now 19 figure
Study of boson production in association with beauty and charm
The associated production of a boson with a jet originating from either a
light parton or heavy-flavor quark is studied in the forward region using
proton-proton collisions. The analysis uses data corresponding to integrated
luminosities of 1.0 and collected with the LHCb detector
at center-of-mass energies of 7 and 8 TeV, respectively. The bosons are
reconstructed using the decay and muons with a transverse
momentum, , larger than 20 GeV in the pseudorapidity range
GeV
and . The sum of the muon and jet momenta must satisfy
GeV. The fraction of jet events that originate from beauty
and charm quarks is measured, along with the charge asymmetries of the
and production cross-sections. The ratio of the jet to
jet production cross-sections is also measured using the
decay. All results are in agreement with Standard Model predictions
Measurement of the mass and lifetime of the baryon
A proton-proton collision data sample, corresponding to an integrated
luminosity of 3 fb collected by LHCb at and 8 TeV, is used
to reconstruct , decays. Using the , decay mode for calibration, the lifetime ratio and absolute
lifetime of the baryon are measured to be \begin{align*}
\frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\
\tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the
uncertainties are statistical, systematic and from the calibration mode (for
only). A measurement is also made of the mass difference,
, and the corresponding mass, which
yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm
MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2.
\end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm
- …